
Secure Programming in C/C++

Kenneth Ingham

September 29, 2009

1 Course overview

This class is for C and C++ programmers who want to write code with fewer exploitable
security bugs. The class focuses on the practice of C coding, and should be applicable to all
software development models (e.g., agile development, the waterfall model, etc).

2 Course objectives

• Learn how to recognize and avoid common C and C++ coding errors, that can lead to
exploitable bugs, including:

– problems with integers, including value truncation, signed and unsigned mixing,
overflow, and underflow.

– format string errors.

– buffer overflows on the stack and heap.

– memory management issues (other than buffer overflow).

– race conditions.

• Learn the security issues that apply only to C++.

• Learn about re-entrant code and why it is important for signal handling.

• Learn the importance and difficulty of erasing sensitive data.

3 Student background

If you are attending this class, then we assume that

• You have attended the “Building Secure Systems” class to understand that half of
security problems are design flaws, and that you cannot code your way out of a bad
design.

1



• You have working knowledge of C and/or C++.

Initial versions of the class will be run on Linux, which means that the students need to
be familiar with an editor and file manipulation on Linux.

4 Logistics

The class lasts two days. The student computers need run Linux; eventually the class will
work with Windows as well. The class uses the following software:

• development tools such as make
• Gnu C/C++ compiler
• Gnu C/C++ compiler (on Linux distribution but needed for Windows)
• Internet access
• Missing from C-coding.tex
• PhkMalloc (in class files)
• gdb (on Linux distribution but needed for Windows)
• nm (on Linux distribution)
• objdump (on Linux distribution but needed for Windows)
• pscan
• rats (on class web site)
• development tools such as make
• development tools such as make (on Linux distribution but needed for Windows)
• development tools such as make (on Linux distribution)
• electric fence (in class files)
• the GD library and include files (gd-devel)
• the PNG library and its include files
• valgrind

This class has no special network requirements beyond general Internet access.
The class needs a web server for the class web site. The instructor’s laptop may be this

web server; otherwise the machine provided in the classroom for the instructor is a good
choice. This machine obviously will need web server software installed.

5 Class outline

1. Introduction (Lecture: 15; Lab: 0)

(a) Class Introductions
(b) Class Logistics

i. Class schedule
ii. Breaks

iii. Question policy

2



iv. Break room and restroom locations
v. Assumptions about your background

(c) Typographic conventions

2. Secure C/C++ Programming (Lecture: 15; Lab: 0)

(a) A real exploit program
(b) Security is a process, not a product
(c) Adding cryptography does not make a program secure
(d) C++ versus C
(e) Summary

3. Security and the software development life cycle (Lecture: 25; Lab: 20)

(a) Introduction
(b) Requirements

i. Example
ii. Use, Abuse, and Misuse cases

(c) Design/Architecture

i. Design is critical
ii. Properly-written specifications

(d) Code development

i. Implementation is critical

(e) Testing
(f) Operations/maintenance
(g) Agile development
(h) Penetrate and patch is the wrong approach
(i) Summary
(j) Lab

4. Integer operations (Lecture: 40; Lab: 75)

(a) Introduction
(b) Value truncation

i. Example
ii. Example
iii. How can you avoid this problem?

(c) Integer overflow and underflow

i. Examples
ii. How can you avoid this problem?

(d) Signed/unsigned problems

i. Example
ii. How can you avoid this problem?

(e) Non-exceptional conditions
(f) Summary

3



(g) Lab

5. Buffer overflow introduction (Lecture: 20; Lab: 0)

(a) Introduction
(b) A simple buffer overflow example
(c) Memory layout

i. Example

(d) Summary

6. Stack overflows (Lecture: 20; Lab: 60)

(a) Introduction
(b) Exploit: calling another function
(c) Other exploits for stack overflows
(d) More stack overflow information
(e) A real stack overflow exploit program
(f) Avoiding these problems
(g) Summary
(h) Lab

7. Heap and other data segment overflows (Lecture: 15; Lab: 40)

(a) Introduction

i. Example

(b) The heap

i. Example

(c) Heap data structure attacks
(d) Common programming errors
(e) Example
(f) Avoiding these problems
(g) Summary
(h) Lab

8. Pointer issues (Lecture: 35; Lab: 50)

(a) Introduction

i. Example

(b) Pointers to functions
(c) C++ virtual method table

i. Example
ii. Destructors

(d) Global offset table (GOT)
(e) The .dtors section

i. Example

(f) Exit handlers

4



i. Example

(g) setjmp/longjmp
(h) Exception handling
(i) Avoiding these problems
(j) Summary
(k) Lab

9. Buffer overflow avoidance and mitigation (Lecture: 45; Lab: 45)

(a) Standard C library functions

i. Example
ii. Alternate functions/libraries

(b) malloc aids

i. PhkMalloc
ii. Electric fence

(c) Die Hard
(d) valgrind

i. Example

(e) Programming strategies
(f) OS- and compiler-level countermeasures

i. General
ii. Stack
iii. Heap

(g) Summary
(h) Lab

10. Format string errors (Lecture: 25; Lab: 60)

(a) Introduction

i. Example

(b) It gets worse!
(c) A real attack program
(d) The problem
(e) How can you avoid this problem?
(f) Summary
(g) Lab

11. Tips and techniques (Lecture: 35; Lab: 45)

(a) Fail securely

i. Example

(b) Validate all input
(c) Only output safe data
(d) C++ class libraries and templates
(e) Exception handling

5



(f) Complete coverage

i. Example

(g) Tools

i. Static analysis tools
ii. Dynamic analysis tools
iii. Testing tools

(h) Summary
(i) Lab

12. Process issues (Lecture: 20; Lab: 25)

(a) Erasing data

i. The problem
ii. Some solutions

(b) Signals

i. Signal-safe calls

(c) Signal race conditions

i. How to avoid these problems

(d) Summary
(e) Lab

13. Filesystem Security Issues (Lecture: 20; Lab: 25)

(a) Erasing data in the filesystem

i. The problem
ii. Solutions

A. Encrypting on-disk data

(b) Filesystem TOCTOU race conditions

i. Example: passwd command races
ii. Avoiding TOCTTOU problems
iii. Coding tips to reduce problems
iv. Example of open with O EXCL and O CREAT

(c) Temporary Files

i. Coding tips to reduce problems

(d) Summary
(e) Lab

6


