Linux Operating System Security

Kenneth Ingham and Anil Somayaji

September 29, 2009

1 Course overview

This class is for students who want to learn how to configure systems to be secure, test the security of systems, and/or and manage the system more securely.

2 Course objectives

- Know how to work with a network mapping tool and how to control what it discovers.
- Know how to work with penetration testing systems and how to reduce their threat.
- Understand network security issues and how to control network access.
- Learn about some of the intrusion detection systems available.
- Understand how the use of cryptography can improve system security, including topics such as VPNs, SSL/TLS, and OpenSSH.
- Understand local operating system security issues, such as logging, file permissions, password security, and the setuid bit.

3 Student background

If you are attending this class, then we assume that

- You should have a basic familiarity with Linux system administration. Specifically:
 - When a lab says, "install the RPM foo.rpm" or "install the package in foo.tar.gz", you should understand what this means and how to do it.
 - You should understand Unix file permissions, how they work, and how you change them.
 - You should understand how to create users and the parts of a user account.

- You should understand the process the system goes through when it boots.

- Knowledge of shell programming will help you understand the system startup scripts, etc.
- If you know regular expressions, you will be able to make better use of the various tools that use them for searching.
- (For optional kernel chapter) You should understand how to build a new kernel (although the class notes will give some guidance on this topic).

4 Logistics

The class lasts three days. Fedora Core 4 The class uses the following software:

- Apache web server
- Bastille Linux RPM
- CentOS 5.x or Red Hat Enterprise 5.x
- Firefox (on Linux distribution but needed for Windows)
- GnuPG
- IP Tables and associated kernel modules and any GUI config tools.
- Kernel sources from kernel.org or distribution
- LIDS distribution to match the kernel
- OpenSSL command-line utilities
- PAM
- Perl-Tk and Perl-Curses RPMs
- TCP wrappers
- *aide* (on OS distribution)
- bzip2
- chattr
- chmod
- find
- fuser
- *iptraf* (if covered in this class)
- logger
- logrotate
- lsattr
- lsof
- mke2fs
- mount
- *named* manual page; a web browser with Internet access
- nessus client and server either installed or distribution files available
- netstat

- nmap
- *nmap* (on distribution media)
- *portsentry* (installed or distribution files)
- *snort* installed or distribution files
- socklist
- \bullet sshd
- ssh
- stunnel version ≥ 4.0
- sudo
- syslogd
- telnet (client)
- umount
- xinetd
- *xinetd* or *inetd*
- pam_wheel.so
- a DHCP and DNS server for the class
- a /test filesystem (size not critical) for mounting nosuid and/or nodev.
- an NIS server on the instructor machine with an account the students will log into (if this class covers NIS)
- ipsec-tools
- static IP addresses (these do not need to be routable)

No class network information specified.

The class needs a web server for the class web site. The instructor's laptop may be this web server; otherwise the machine provided in the classroom for the instructor is a good choice. This machine obviously will need web server software installed.

5 Class outline

- 1. Introduction (Lecture: 15; Lab: 0)
 - (a) Class Introductions
 - (b) Class Logistics
 - i. Class schedule
 - ii. Breaks
 - iii. Question policy
 - iv. Break room and restroom locations
 - v. Assumptions about your background
 - (c) Typographic conventions
 - (d) What the class covers
- 2. General Security Issues (Lecture: 25; Lab: 30)
 - (a) General OS security

- i. Physical security is paramount
- ii. Security is a process, not a product
- iii. Fewest services/minimal functionality
- iv. Least privilege
- v. Compartmentalization
- vi. Defense in depth
- (b) Patches and keeping current
- (c) Security myths
 - i. "We have a firewall, the attackers cannot get to this machine"
 - ii. "I use anti-virus software; my machine does not have any malware"
- (d) Class software
- (e) Summary
- (f) Lab
- 3. Logging (Lecture: 30; Lab: 35)
 - (a) Overview
 - (b) syslogd
 - i. syslog.conf
 - ii. Facilities
 - iii. Severity Levels
 - iv. Actions
 - (c) Log file rotation
 - i. *logrotate* directives
 - (d) Utilities to assist with log files
 - (e) Summary
 - (f) Lab
- 4. Authentication (Lecture: 45; Lab: 45)
 - (a) Password cracking
 - (b) PAM
 - i. Example
 - (c) Root access
 - (d) sudo
 - i. *sudo* configuration
 - (e) nsswitch.conf
 - (f) Kerberos
 - i. Quick Overview
 - ii. Session Protocol
 - iii. Setting up a Kerberos server
 - iv. Setting up a Kerberos client
 - (g) LDAP

- i. Setting up an LDAP server
- ii. Using LDAP as a client
- (h) Summary
- (i) Lab
- 5. Local security issues (Lecture: 20; Lab: 60)
 - (a) Disk partitioning
 - (b) Setuid files
 - (c) The sticky bit on a directory
 - (d) Local security scanners
 - i. rpm verification

A. Limits of rpm verification

- (e) Summary
- (f) Lab

6. nmap and network mapping (Lecture: 20; Lab: 40)

- (a) *nmap* overview
- (b) Using *nmap*
- (c) *netstat*
- (d) *lsof* and *fuser*
- (e) Summary
- (f) Lab

7. Penetration testing (Lecture: 15; Lab: 60)

- (a) Testing for security
- (b) nessus
 - i. Installing and running *nessus*
- (c) Other non-commercial penetration testing tools
- (d) Commercial penetration testing tools
- (e) Summary
- (f) Lab
- 8. Network access control (Lecture: 50; Lab: 60)
 - (a) Introduction
 - (b) TCP wrappers
 - (c) xinetd
 - (d) IP Tables
 - i. OS details
 - ii. Basic IP tables commands
 - iii. Rules
 - iv. *iptables* examples
 - (e) GUI configuration tools
 - (f) Troubleshooting

- (g) Summary
- (h) Lab
- 9. Intrusion Detection Overview (Lecture: 25; Lab: 35)
 - (a) Introduction
 - (b) Types of Intrusion Detection Systems
 - i. Input data stream
 - ii. Data analysis method
 - iii. Response strategy
 - iv. Honeypots and darknets
 - (c) Evaluating IDS systems
 - (d) Comparing IDS strategies
 - (e) IDS Overview Lab
- 10. Host-based Intrusion Detection Systems (Lecture: 20; Lab: 65)
 - (a) Introduction
 - (b) aide
 - i. Using *aide*
 - (c) *tripwire*
 - i. Configuring Tripwire
 - (d) portsentry
 - i. Installing and configuring *portsentry*
 - (e) Other open source host-based IDSs
 - (f) Commercial products
 - (g) Summary
 - (h) Lab
- 11. Network Intrusion Detection Systems (Lecture: 15; Lab: 45)
 - (a) Introduction
 - (b) *snort*
 - i. Installing *snort*
 - ii. Configuring snort
 - iii. Running *snort*
 - (c) Other NIDSs
 - (d) Lab
- 12. SELinux (Lecture: 35; Lab: 30)
 - (a) Overview of SELinux
 - (b) Discretionary versus mandatory access control
 - (c) SELinux vocabulary
 - (d) Security contexts
 - i. Overview

- ii. Example
- iii. Processes
- iv. Files and filesystems
- (e) Security policies
- (f) Enabling SELinux
- (g) Working with file contexts
- (h) Handling SELinux denials
- (i) SELinux notes
- (j) Summary
- (k) Lab
- 13. Cryptography Overview (Lecture: 70; Lab: 55)
 - (a) Introduction
 - i. Cryptographic Applications
 - ii. Open design
 - (b) Cryptographic Primitives
 - i. Cryptographic hash functions
 - ii. Symmetric key encryption
 - iii. Public key encryption
 - (c) Digital signatures
 - (d) Public Key Management
 - i. The Problem
 - ii. Certificates
 - iii. Trust Models
 - iv. Example: PGP/GnuPG
 - v. Example: SSL/TLS
 - vi. Overview
 - A. The server
 - B. The client
 - (e) Random numbers
 - (f) Parameter sizes
 - (g) Insecure Cryptography
 - i. Key management errors
 - (h) Do not innovate in cryptography
 - (i) Summary
 - (j) Lab
- 14. Cryptographic Tools (Lecture: 40; Lab: 45)
 - (a) Introduction
 - (b) GnuPG digital signatures
 - i. Example: Obtaining a key from a key server
 - ii. Verifying PGP signatures

- iii. Verifying package signatures with rpm
- (c) ssh
 - i. Public key authentication
 - ii. Tunneling
 - iii. ssh client issues
 - iv. ssh server issues
- (d) Lab
- 15. SSL and TLS (Lecture: 30; Lab: 60)
 - (a) Overview
 - (b) The server
 - (c) The client
 - (d) OpenSSL
 - (e) SSL/TLS configuration for servers
 - i. Apache
 - ii. SMTP AUTH and STARTTLS
 - iii. $stunnel \ge 4.0$
 - iv. stunnel configuration file
 - (f) SSL/TLS issues in web browsers
 - (g) Important Points
 - (h) Lab
- 16. IPsec (Lecture: 30; Lab: 60)
 - (a) Introduction
 - (b) How IPsec works
 - (c) IPsec implementations for Linux
 - (d) ipsec-tools
 - (e) IPsec issues
 - (f) VPN Security
 - (g) Summary
 - (h) Lab

Appendices

- A. Review of networking concepts (Lecture: 15; Lab: 0)
 - (a) ISO model of networking
 - i. Network layer addressing
 - (b) UDP
 - (c) TCP
 - i. TCP connection setup
 - (d) ICMP
- B. Loop filesystem (Lecture: 0; Lab: 0)

- (a) Loop device
- C. Security packages and distributions (Lecture: 20; Lab: 20-140)
 - (a) Bastille Linux
 - (b) LIDS
 - (c) OpenWall
 - (d) Trustix Secure Linux
 - (e) Debian
 - (f) OpenBSD
 - (g) Lab

D. Kernel configuration options (optional) (Lecture: 20; Lab: 105)

- (a) Kernel modules
- (b) *lcap*
- (c) Lab
- E. Network Configuration (Lecture: 30; Lab: 45)
 - (a) Network configuration
 - i. DHCP client configuration
 - ii. Static network configuration
 - (b) DNS lookups
 - i. /etc/resolv.conf
 - ii. host
 - (c) Virtual network interfaces
 - (d) *mii-tool* and *ethtool*
 - i. Examples
 - (e) system-config-network
 - (f) Troubleshooting
 - (g) Summary
 - (h) Lab
- F. Network services (Lecture: 30; Lab: 45)
 - (a) *xinetd*
 - (b) ssh
 - i. Public key authentication
 - ii. Tunneling
 - (c) NFS
 - i. Client
 - ii. Server
 - (d) Automounter
 - (e) Troubleshooting
 - (f) Summary
 - (g) Lab