
Metasploit 3.0 Developer’s Guide

The Metasploit Staff
msfdev@metasploit.com

Last modified: 2/25/2007

Contents

1 Introduction 4
1.1 Why Ruby? . 4
1.2 Design and Architecture . 6

2 Rex 8
2.1 Assembly . 8

2.1.1 Integer packing . 8
2.1.2 Stack pointer adjustment 8
2.1.3 Architecture-specific opcode generation 9

2.2 Encoding . 9
2.3 Exploitation . 9

2.3.1 Egghunter . 9
2.3.2 SEH record generation . 10

2.4 Jobs . 10
2.5 Logging . 10

2.5.1 LEV 0 - Default . 11
2.5.2 LEV 1 - Extra . 11
2.5.3 LEV 2 - Verbose . 11
2.5.4 LEV 3 - Insanity . 11

2.6 Opcode Database . 12
2.7 Post-exploitation . 12
2.8 Protocols . 12

2.8.1 DCERC . 12
2.8.2 HTTP . 12
2.8.3 SMB . 13

2.9 Services . 13
2.10 Sockets . 13

2.10.1 Comm classes . 14
2.10.2 TCP sockets . 15
2.10.3 SSL sockets . 15
2.10.4 Switch board routing table 15
2.10.5 Subnet walking . 15

2.11 Synchronization . 15
2.11.1 Notification events . 16

1

2.11.2 Reader/Writer locks . 16
2.11.3 Reference counting . 16
2.11.4 Thread-safe operations . 16

2.12 Ui . 17
2.12.1 Text . 17

3 Framework Core 20
3.1 DataStore . 21
3.2 Event Notifications . 21

3.2.1 Exploit events . 22
3.2.2 General framework events 22
3.2.3 Database events . 22
3.2.4 Session events . 23

3.3 Framework Managers . 23
3.3.1 Module management . 23
3.3.2 Plugin management . 25
3.3.3 Session management . 26
3.3.4 Job management . 26

3.4 Utility Classes . 27
3.4.1 Exploit driver . 27
3.4.2 Encoded payload . 28

4 Framework Base 30
4.1 Configuration . 30
4.2 Logging . 30
4.3 Serialization . 31
4.4 Sessions . 31

4.4.1 CommandShell . 32
4.4.2 Meterpreter . 32

4.5 Simplified Framework . 32
4.5.1 Auxiliary . 33
4.5.2 Exploit . 33
4.5.3 NOP . 33
4.5.4 Payload . 34

5 Framework Ui 35

6 Framework Modules 36
6.1 Auxiliary . 39
6.2 Encoder . 41

6.2.1 encode . 42
6.2.2 do encode . 43
6.2.3 Helper methods . 44

6.3 Exploit . 44
6.3.1 Stances . 44
6.3.2 Types . 45

2

6.3.3 Interface . 46
6.3.4 Accessors and Attributes 48
6.3.5 Mixins . 51

6.4 Nop . 54
6.4.1 generate sled . 54
6.4.2 nop repeat threshold . 54

6.5 Payload . 55
6.5.1 Interface . 55
6.5.2 Types . 58
6.5.3 Handlers . 60

7 Framework Plugins 63

8 Framework Sessions 65
8.1 Command Shell . 66
8.2 Meterpreter . 66

9 Methodologies 67

A Samples 68
A.1 Framework . 68

A.1.1 Dumping module info . 68
A.1.2 Encoding the contents of a file 69
A.1.3 Enumerating modules . 69
A.1.4 Running an exploit using framework base 70
A.1.5 Running an exploit using framework core 71

A.2 Framework Module . 72
A.2.1 Auxiliary . 72
A.2.2 Encoder . 73
A.2.3 Exploit . 73
A.2.4 Nop . 75
A.2.5 Payload . 75

A.3 Framework Plugin . 76
A.3.1 Console user interface plugin 76

3

Chapter 1

Introduction

The Metasploit framework is an open-source exploitation framework that is
designed to provide security researchers and pen-testers with a uniform model
for rapid development of exploits, payloads, encoders, NOP generators, and
reconnaissance tools. The framework provides exploit writers with the ability
to re-use large chunks of code that would otherwise have to be copied or re-
implemented on a per-exploit basis. To help further this cause, the Metasploit
staff is proud to present the next major evolution of the exploitation framework:
version 3.0.

The 3.0 version of the framework is a re-factoring of the 2.x branch which has
been written entirely in Ruby. The primary goal of the 3.0 branch is to make
the framework easy to use and extend from a programmatic aspect. This goal
encompasses not only the development of framework modules, such as exploits,
but also to the development of third party tools and plugins that can be used
to increase the functionality of the entire suite. By developing an easy to use
framework at a programmatic level, it follows that exploits and other extensions
should be easier to understand and implement than those provided in earlier
versions of the framework.

This document will provide the reader with an explanation of the design goals,
methodologies, and implementation details of the 3.0 version of the framework.
Henceforth, the 3.0 version of the framework will simply be referred to as the
framework.

1.1 Why Ruby?

During the development of the framework, the one recurring question that the
Metasploit staff was continually asked was why Ruby was selected as the pro-

4

gramming language. To avoid having to answer this question on an individual
basis, the authors have opted for explaining their reasons in this document.

The Ruby programming language was selected over other choices, such as python,
perl, and C++ for quite a few reasons. The first (and primary) reason that Ruby
was selected was because it was a language that the Metasploit staff enjoyed
writing in. After spending time analyzing other languages and factoring in past
experiences, the Ruby programming language was found to offer both a simple
and powerful approach to an interpreted language. The degree of introspection
and the object-oriented aspects provided by Ruby were something that fit very
nicely with some of the requirements of the framework. The framework’s need
for automated class construction for code re-use was a key factor in the decision
making process, and it was one of the things that perl was not very well suited
to offer. On top of this, the syntax is incredibly simplistic and provides the
same level of language features that other more accepted languages have, like
perl.

The second reason Ruby was selected was because of its platform independent
support for threading. While a number of limitations have been encountered
during the development of the framework under this model, the Metasploit
staff has observed a marked performance and usability improvement over the
2.x branch. Future versions of Ruby (the 1.9 series) will back the existing
threading API with native threads for the operating system the interpreter is
compiled against which will solve a number of existing issues with the current
implementation (such as permitting the use of blocking operations). In the
meantime, the existing threading model has been found to be far superior when
compared to a conventional forking model, especially on platforms that lack a
native fork implementation like Windows.

Another reason that Ruby was selected was because of the supported existence
of a native interpreter for the Windows platform. While perl has a cygwin
version and an ActiveState version, both are plagued by usability problems.
The fact that the Ruby interpreter can be compiled and executed natively on
Windows drastically improves performance. Furthermore, the interpreter is also
very small and can be easily modified in the event that there is a bug.

The Python programming language was also a language candidate. The reason
the Metasploit staff opted for Ruby instead of python was for a few different
reasons. The primary reason is a general distaste for some of the syntactical
annoyances forced by python, such as block-indention. While many would argue
the benefits of such an approach, some members of the Metasploit staff find it to
be an unnecessary restriction. Other issues with Python center around limita-
tions in parent class method calling and backward compatibility of interpreters.

The C/C++ programming languages were also very seriously considered, but in
the end it was obvious that attempting to deploy a portable and usable frame-
work in a non-interpreted language was something that would not be feasible.

5

Furthermore, the development time-line for this language selection would most
likely be much longer.

Even though the 2.x branch of the framework has been quite successful, the
Metasploit staff encountered a number of limitations and annoyances with perl’s
object-oriented programming model, or lack thereof. The fact that the perl
interpreter is part of the default install on many distributions is not something
that the Metasploit staff felt was worth detouring the language selection. In the
end, it all came down to selecting a language that was enjoyed by the people
who contribute the most to the framework, and that language ended up being
Ruby.

1.2 Design and Architecture

The framework was designed to be as modular as possible in order to encour-
age the re-use of code across various projects. The most fundamental piece
of the architecture is the Rex library which is short for the Ruby Extension
Library1. Some of the components provided by Rex include a wrapper socket
subsystem, implementations of protocol clients and servers, a logging subsys-
tem, exploitation utility classes, and a number of other useful classes. Rex itself
is designed to have no dependencies other than what comes with the default
Ruby install. In the event that a Rex class depends on something that is not
included in the default install, the failure to find such a dependency should not
lead to an inability to use Rex.

The framework itself is broken down into a few different pieces, the most low-
level being the framework core. The framework core is responsible for imple-
menting all of the required interfaces that allow for interacting with exploit
modules, sessions, and plugins. This core library is extended by the framework
base library which is designed to provide simpler wrapper routines for dealing
with the framework core as well as providing utility classes for dealing with
different aspects of the framework, such as serializing module state to different
output formats. Finally, the base library is extended by the framework ui which
implements support for the different types of user interfaces to the framework
itself, such as the command console and the web interface.

Separate from the framework itself are the modules and plugins that it’s de-
signed to support. A framework module is defined as being one of an exploit,
payload, encoder, NOP generator, or auxiliary. These modules have a well-
defined structure and interface for being loaded into the framework. A frame-
work plugin is very loosely defined as something that extends the functionality
of the framework or augments an existing feature to make it act in a different
manner. Plugins can add new commands to user interfaces, log all network

1This library has many similarities to the 2.x Pex library

6

traffic, or perform whatever other actions that might be useful.

Figure 1.1 illustrates the framework’s inter-package dependencies. The following
sections will elaborate on each of the packages described above and the various
important subsystems found within each package. Full documentation of the
classes and APIs mentioned in this document can be found in the auto-generated
API level documentation found on the Metasploit website.

Figure 1.1: Framework 3.0 package dependencies

7

Chapter 2

Rex

The Rex library is a collection of classes and modules that may be useful to
more than one project. The most useful classes provided by the library are
documented in the following subsections. To use the Rex library, a ruby script
should require rex.

2.1 Assembly

When writing exploits it is often necessary to generate assembly instructions on
the fly with variable operands, such as immediate values, registers, and so on. To
support this requirement, the Rex library provides classes under the Rex::Arch
namespace that implement architecture-dependent opcode generation routines
as well as other architecture-specific methods, like integer packing.

2.1.1 Integer packing

Packing an integer depends on the byte-ordering of the target architecture,
whether it be big endian or little endian. The Rex::Arch.pack addr method
supports packing an integer using the supplied architecture type (ARCH XXX) as
an indication of which byte-ordering to use.

2.1.2 Stack pointer adjustment

Some exploits require the stack pointer be adjusted prior to the execution of a
payload that modifies the stack in order to prevent corruption of the payload
itself. To support this, the Rex::Arch.adjust stack pointer method provides

8

a way to generate the opcodes that lead to adjusting the stack pointer of a given
architecture by the supplied adjustment value. The adjustment value can be
positive or negative.

2.1.3 Architecture-specific opcode generation

Each architecture that currently has support for dynamically generating instruc-
tion opcodes has a class under the Rex::Arch namespace, such as Rex::Arch::X86.
The X86 class has support for generating jmp, call, push, mov, add, and sub
instructions.

2.2 Encoding

Encoding buffers using algorithms like XOR can sometimes be useful outside
the context of an exploit. For that reason, the Rex library provides a basic
set of classes that implement different types of XOR encoders, such as variable
length key XOR encoders and additive feedback XOR encoders. These classes
are used by the framework to implement different types of basic encoders that
can be used by encoder modules. The classes for encoding buffers can be found
in the Rex::Encoding namespace.

2.3 Exploitation

Often times vulnerabilities will share a common attack vector or will require a
specific order of operations in order to achieve the end-goal of code execution.
To assist in that matter, the Rex library has a set of classes that implement
some of the common necessities that exploits may have.

2.3.1 Egghunter

In some cases the exploitation of a vulnerability may be limited by the amount
of payload space that exists in the area of the overflow. This can sometimes
prevent normal methods of exploitation from being possible due to the inability
to fit a standard payload in the amount of room that is available. To solve
this problem, an exploit writer can make use of an egghunting payload that
searches the target process’ address space for an egg that is prefixed to a larger
payload. This requires that an attacker have the ability to stick the larger
payload somewhere else in memory prior to exploitation. In the event that an
egghunter is necessary, the Rex::Exploitation::Egghunter class can be used.

9

2.3.2 SEH record generation

One attack vector that is particularly common on the Windows platform is
what is referred to as an SEH overwrite. When this occurs, an SEH registration
record is overwritten on the stack with user-controlled data. To leverage this,
the handler address of the registration record is pointed to an address that will
either directly or indirectly lead to control of execution flow. To make this work,
most attackers will point the handler address at the location of a pop/pop/ret
instruction set somewhere in the address space. This action returns four bytes
before the location of the handler address on the stack. In most cases, attackers
will set two of the four bytes to be equivalent a short jump instruction that hops
over the handler address and into the payload controlled by the attacker.

While the common approach works fine, there is plenty of room for improve-
ment. The Rex::Exploitation::Seh class provides support for generating the
normal (static) SEH registration record via the generate static seh record
method. However, it also supports the generation of a dynamic registration
record that has a random short jump length and random padding between the
end of the registration record and the actual payload. This can be used to make
the exploit harder to signature in an IDS environment. The generation of a dy-
namic registration record is provided by generate dynamic seh record. Both
methods are wrapped by the generate seh record method that decides which
of the two methods to use based on evasion levels.

2.4 Jobs

In some cases it is helpful to break certain tasks down into the concept of jobs.
Jobs are simply defined as finite workitems that have a specific task. Using
this definition, the Rex library provides a class named Rex::JobContainer
that exposes an interface for coordinating various finite tasks in a centralized
manner. New jobs can be added to the job container by calling the add job
method. Once added, a job can be started by issuing a call to the start job
method. At any time, a job can be stopped by calling the stop job which will
also remove the job by calling the remove job method.

For more information about the usage of these API routines, please refer to the
auto-generated documentation on Metasploit website.

2.5 Logging

The Rex library provides support for the basic logging of strings to arbitrary
log sinks, such as a flat file or a database. The logging interface is exposed

10

to programmers through a set of globally-defined methods: dlog, ilog, wlog,
elog, and rlog. These methods represent debug logging, information logging,
warning logging, error logging, and raw logging respectively. Each method can
be passed a log message, a log source (the name of the component or package
that the message came from), and a log level which is a number between zero
and three. Log sources can be registered on the fly by register log source
and their log level can be set by set log level.

The log levels are meant to make it easy to hide verbose log messages when they
are not necessary. The use of the three log levels is defined below:

2.5.1 LEV 0 - Default

This log level is the default log level if none is specified. It should be used when
a log message should always be displayed when logging is enabled. Very few
log messages should occur at this level aside from necessary information logging
and error/warning logging. Debug logging at level zero is not advised.

2.5.2 LEV 1 - Extra

This log level should be used when extra information may be needed to under-
stand the cause of an error or warning message or to get debugging information
that might give clues as to why something is happening. This log level should
be used only when information may be useful to understanding the behavior of
something at a basic level. This log level should not be used in an exhaustively
verbose fashion.

2.5.3 LEV 2 - Verbose

This log level should be used when verbose information may be needed to ana-
lyze the behavior of the framework. This should be the default log level for all
detailed information not falling into LEV 0 or LEV 1. It is recommended that
this log level be used by default if you are unsure.

2.5.4 LEV 3 - Insanity

This log level should contain very verbose information about the behavior of the
framework, such as detailed information about variable states at certain phases
including, but not limited to, loop iterations, function calls, and so on. This log
level will rarely be displayed, but when it is the information provided should
make it easy to analyze any problem.

11

2.6 Opcode Database

The rex library provides a class that makes it possible to interact with the
Metasploit opcode database in a programmatic fashion. The class that provides
this feature can be found in Rex::Exploitation::OpcodeDb::Client. To learn
more about interacting with the opcode database using this interface, please
refer to the auto-generated documentation on the Metasploit website.

2.7 Post-exploitation

The rex library provides client-side implementations for some advanced post-
exploitation suites, such as DispatchNinja and Meterpreter. These two post-
exploitation client interfaces are designed to be usable outside of the context
of an exploit. The Rex::Post namespace provides a set of classes at its root
that are meant to act as a generalized interface to remote systems via the post-
exploitation clients, if supported. These classes allow programmers to write au-
tomated tools that can operate upon remote machines in a platform-independent
manner. While it’s true that platforms may lack analogous feature sets for some
actions, the majority of the common set of actions will have functional equiva-
lents.

2.8 Protocols

Support for some of the more common protocols, such as HTTP and SMB, is
included in the rex library to help with the development of protocol-specific
exploits and to allow for ease of use in other projects. Each protocol implemen-
tation exists under the Rex::Proto namespace.

2.8.1 DCERC

The rex library supports a fairly robust implementation of a porition of the
DCERPC feature-set and includes support for doing evasive actions such as
multi-context bind and packet fragmentation. The classes that support the
DCERPC client interface can be found in the Rex::Proto::DCERPC namespace.

2.8.2 HTTP

Minimal support for an HTTP client and server is provided in the rex library.
While similar protocol class implementations are provided both in webrick and

12

in other areas of the ruby default standard library set, it was deemed that the
current implementations were not well suited for general purpose use due to the
existence of blocking request parsing and other such things. The rex-provided
HTTP library also provides classes for parsing HTTP requests and responses.
The HTTP protocol classes can be found under the Rex::Proto::Http names-
pace.

2.8.3 SMB

Robust support for the SMB protocol is provided by the classes in the Rex::Proto::SMB
namespace. These classes support connecting to SMB servers and performing
logins as well as other SMB-exposed actions like transacting a named pipe and
performing other specific commands. The SMB classes are particularly useful
for exploits that require communicating with an SMB server.

2.9 Services

One of the limitations identified in the 2.x branch of the framework was that
it was not possible to share listeners on the local machine when attempting to
perform two different exploits that both needed to listen on the same port. To
solve this problem, the 3.0 version of the framework provides the concept of
services which are registered listeners that are initialized once and then sub-
sequently shared by future requests to allocate the same service. This makes
it possible to do things like have two exploits waiting for an HTTP request on
port 80 without having any sort of specific conflicts. This is especially useful
because it makes it possible to not have to worry about firewall restrictions on
outbound ports that would normally only permit connections to port 80, thus
making it possible to try multiple client-side exploits against a host with all the
different exploit instances listening on the same port for requests.

Aside from the sharing of HTTP-like services, the service subsystem also pro-
vides a way to relay connections from a local TCP port to an already existing
stream. This support is offered through the Rex::Services::LocalRelay class.

2.10 Sockets

One of the most important features of the rex library is the set of classes that
wrapper sockets. The socket subsystem provides an interface for creating sockets
of a given protocol using what is referred to as a Comm factory class. The purpose
of the Comm factory class is to make the underlying transport and classes used
to establish the connection for a given socket opaque. This makes it possible

13

for socket connections to be established using the local socket facilities as well
as by using some sort of tunneled socket proxying system as is the case with
Meterpreter connection pivoting.

Sockets are created using the socket Parameter class which is initialized either
directly or through the use of a hash. The hash initialization of the Parame-
ters class is much the same as perl’s socket initialization. The hash attributes
supported by the Parameter class are documented in the constructor of the
Parameter class.

There are a few different ways to create sockets. The first way is to simply call
Rex::Socket.create with a hash that will be used to create a socket of the
appropriate type using the supplied or default Comm factory class. A second
approach that can be used is to call the Rex::Socket::create param method
which takes an initialized Parameter instance as an argument. The remaining
approaches involve using protocol-specific factory methods, such as create tcp,
create tcp server, and create udp. All three of these methods take a hash
as a parameter that is translated into a Parameter instance and passed on for
actual creation.

All sockets have five major attributes that are shared in common, though some
may not always be initialized. The first attributes provide information about the
remote host and port and are exposed through the peerhost and peerport at-
tributes, respectively. The second attributes provide information the local host
and port and are exposed through the localhost and localport attributes,
respectively. Finally, every socket has a hash of contextual information that was
used during it’s creation which is exposed through the context attribute. While
most exploits will have an empty hash, some exploits may have a hash that con-
tains state information that can be used to track the originator of the socket.
The framework makes use of this feature to associate sockets with framework,
exploit, and payload instances.

2.10.1 Comm classes

The Comm interface used in the library has one simple method called create
which takes a Parameter instance. The purpose of this factory approach is to
provide a location and transport independent way of creating compatible socket
object instances using a generalized factory method. For connections being
established directly from the local box, the Rex::Socket::Comm::Local class
is used. For connections be established through another machine, a medium
specific Comm factory is used, such as the Meterpreter Comm class.

The Comm interface also supports registered event notification handlers for when
certain things occur, like prior to and after the creation of a new socket. This
can be used by external projects to augment the feature set of a socket or to
change its default behavior.

14

2.10.2 TCP sockets

TCP sockets in the Rex library are implemented as a mixin, Rex::Socket::Tcp,
that extends the built-in ruby Socket base class when the local Comm factory is
used. This mixin also includes the Rex::IO::Stream and Rex::Socket mixins.
For TCP servers, the Rex::Socket::TcpServer class should be used.

2.10.3 SSL sockets

SSL sockets are implemented on top of the normal Rex TCP socket mixin and
makes use of the OpenSSL Ruby support. The module used for SSL TCP
sockets is Rex::Socket::SslTcp.

2.10.4 Switch board routing table

One of the advancements in the 3.0 version of the framework is the concept of
a local routing table that controls which Comm factory is used for a particular
route. The reason this is useful is for scenarios where a box is compromised
that straddles an internal network that can’t be directly reached. By adjusting
the switch board routing table to point the local subnet through a Meterpreter
Comm running on the host that straddles the network, it is possible to force
the socket library to automatically use the Meterpreter Comm factory when
anything tries to communicate with hosts on the local subnet. This support is
implemented through the Rex::Socket::SwitchBoard class.

2.10.5 Subnet walking

The Rex::Socket::SubnetWalker class provides a way of enumerating all the
IP addresses in a subnet as described by a subnet address and a netmask.

2.11 Synchronization

Due to the use of multi-threading, the Rex library provides extra classes that
don’t exist by default in the Ruby standard library. These classes provide extra
synchronization primitives.

15

2.11.1 Notification events

While Ruby does have the concept of a ConditionVariable, it lacks the com-
plete concept of notification events. Notification events are used extensively on
platforms like Windows. These events can be waited on and signaled, either
permanently or temporarily. Please refer to Microsoft’s online documentation
for more information. This support is provided by the Rex::Sync::Event class.

2.11.2 Reader/Writer locks

A common threading primitive is the reader/writer lock. Reader/writer locks
are used to make it possible for multiple threads to be reading a resource con-
currently while only permitting exclusive access to one thread when write op-
erations are necessary. This primitive is especially useful for resources that are
not updated very often as it can drastically reduce lock contentions. While it
may be overkill to have such a synchronization primitive in the library, it’s still
cool.

The reader/writer lock implementation is provided by the Rex::ReadWriteLock
class. To lock the resource for read, the lock read method can be used. To
lock the resource for write access, the lock write method can be used.

2.11.3 Reference counting

In some cases it is necessary to reference count an instance in a synchronized
fashion so that it is not cleaned up or destroyed until the last reference is gone.
For this purpose, the Rex::Ref class can be used with the refinit method for
initializing references to 1 and the ref and deref methods that do what their
names imply. When the reference count drops to zero, the cleanup method is
called on the object instance to give it a chance to restore things back to normal
in a manner similar to a destructor.

2.11.4 Thread-safe operations

Some of the built-in functions in Ruby are not thread safe in that they can
block other ruby threads from being scheduled in certain conditions. To solve
this problem, the functions that have issues have been wrappered with im-
plementations that ensure that not all ruby threads will block. The specific
methods that required change were select and sleep.

16

2.12 Ui

The Rex library provides a set of helper classes that may be useful to certain
user interface mediums. These classes are not included by default when requiring
rex, so a programmer must be sure to require rex/ui to get the classes described
in this section. At the time of this writing, the only user interface medium that
has any concrete classes defined is the text, which is synonymous with the
console, user interface medium.

2.12.1 Text

The text user interface medium provides classes that allow a programmer to
interact with a terminal’s input and output handles. It also provides classes for
simulating a pseudo-command shell in as robust as manner as possible.

Input

The Rex::Ui::Text::Input class acts as a base class for more specific user
input mediums. The base class interface provides a basic set of methods for
reading input from the user (gets), checking if standard input has closed (eof?),
and others. There are currently two classes that extend the base class. The first
is Rex::Ui::Text::Input::Stdio. This class simply makes use of the $stdin
globally scoped variable in Ruby. This is the most basic form of acquiring user
input. The second class is Rex::Ui::Text::Input::Readline which interacts
with the user through the readline library. If no readline installation is present,
the class will not be usable. These two classes can be used by the shell classes
described later in this subsection.

Output

The Rex::Ui::Text::Output class implements the more generalized Rex::Ui::Output
abstract interface. The purpose of the class is to define a set of functions that can
be used to provide the user with output. There are currently two classes that im-
plement the textual output interface. The first is Rex::Ui::Text::Output::Buffer.
This output medium serializes printed text to a buffer that can be retrieved via
the instance’s buf attribute. The second class is Rex::Ui::Text::Output::Stdio.
This class is the complement to the stdio input class and simply uses the $stdout
global variable to supply the user’s terminal with output.

17

Shell

The Rex::Ui::Text::Shell class provides a simple pseudo-shell base class that
can be used to implement an interactive prompting shell with a user. The
class is instantiated by passing a prompt string and a prompt character (which
defaults to >) to the constructor. By default, the shell’s input and output class
instances are initialized to instances of the Rex::Ui::Text::Input::Stdio and
Rex::Ui::Text::Output::Stdio, respectively. To change the input and output
class instances, a call can be made to the init ui method.

To use the shell, a call must be made to the shell instance’s run method. This
method accepts either a block context, which will be passed line-based input
strings, or will operate in a callback mode where a call is made to the run single
method on the shell instance. If the second method is used, the class is intended
to be overridden with a custom implementation of the run single method.

Dispatcher Shell

The Rex::Ui::Text::DispatcherShell class extends the Rex::Ui::Text::Shell
class by introducing the concept of a generalized command dispatcher interface.
The dispatcher shell works by overriding the run single method. Unlike the
base shell class, the dispatcher shell provides a mechanism by which command
dispatchers can be registered for processing input text in a normalized fashion.
All command dispatchers should include the Rex::Ui::Text::DispatcherShell::CommandDispatcher
mixin which provides a set of helper methods, mainly dealing without wrapper-
ing the output of text.

The registration of a command dispatcher is accomplished by calling either
enstack dispatcher or append dispatcher. The enstack dispatcher front
inserts the supplied command dispatcher instance so that it will have the first
opportunity to process commands. The append dispatcher method inserts
the supplied command dispatcher instance at the end of the list. To remove
command dispatchers, the complementary methods destack dispatcher and
remove dispatcher can be used.

When a line of input arrives, the base shell class calls the overridden run single
method which breaks the input string down into an array of arguments as de-
limited by normal shell characters. The first argument in the string is then
evaluated in relation to all of the registered command dispatchers by checking
to see if any of them implement a method called cmd <arg 0>. If they do, the
dispatcher shell calls the method and passes it the parsed argument array.

In order to make it possible to automatically generate a help menu for all reg-
istered command dispatchers, each command dispatcher should implement a
method named commands which should return a hash that associates commands
with a description of the operation they perform.

18

Table

The Rex::Ui::Text::Table class can be used to format data in the form of a
table with a header, columns, and rows. For more information on using the table
class, please refer to the auto-generated API documentation on the Metasploit
website.

Subscribers

The Rex library supports creating classes that are designed to subscribe to in-
put and output interfaces via the Rex::Ui::Subscriber interface. This mixin
provides a method called init ui which can be passed an input and output
class instance. These instances should implement the Rex::Ui::Text::Input
and Rex::Ui::Output interfaces, respectively. Once init ui has been called,
subsequent calls to methods like print line will be passed down into the ini-
tialized output class instance. If no class instance has been defined, the call
will be ignored. This makes it possible to provide a way by which classes can
interact with the user interface only when desired. To disable user interface
interaction, a call can be made to reset ui which will disable future input and
output classes for the class.

19

Chapter 3

Framework Core

The framework core implements the set of classes that provide an interface to
framework modules and plugins. The core portion of the framework is designed
by used in an instance-based approach. This means that the entire framework
state can be contained within one class instance thereby allowing programmers
to have multiple concurrent and separate framework instances in use at the same
time rather than forcing everything to share one singleton instance.

The current major version of the framework core can be accessed through
Msf::Framework::Major and the minor version can be accessed through Msf::Framework::Minor.
A combined version of these two version numbers can be accessed through
Msf::Framework::Version or framework.version on an instance level. The
current revision of the framework core interface can be accessed through
Msf::Framework::Revision.

The framework core is accessed through an instance of the Msf::Framework
class. Creating an instance of the framework is illustrated in figure 3.1.

framework = Msf::Framework.new

Figure 3.1: Creating an instance of the framework

The framework instance itself is nothing more than a way of connecting the
different critical subsystems of the framework core, such as module management,
session management, event dispatching, and so on. The manner of using these
subsystems will be described in the following subsections. To use the framework
core library, a ruby script should require msf/core.

20

3.1 DataStore

Each framework instance has an instance of the Msf::DataStore class that can
be accessed via framework.datastore. The purpose of the datastore in the
3.0 version of the framework is to act as a replacement for the concept of the
environment in the 2.x branch. The datastore is simply a hash of values that may
be used either by modules or by the framework itself to reference programmer
or user controlled values. Interacting with the datastore is illustrated in figure
3.2.

framework.datastore[’foo’] = ’bar’

if (framework.datastore[’foo’] == ’bar’)
puts "’foo’ is ’bar’"

end

Figure 3.2: Creating an instance of the framework

Modules will inherit values from the framework’s global datastore if they are
not found in the module’s localized datastore. This aspect will be discussed in
more detail in chapter 6.

3.2 Event Notifications

One of the major goals with the 3.0 version of the framework was to provide
developers with a useful event notification system that would allow them to
perform arbitrary actions when certain framework events occurred. To support
this, each framework instance can have event handlers registered through the
framework.events attribute which is an instance of the Msf::EventDispatcher
class.

The EventDispatcher class supports registering event handlers for a few basic
different categories. These categories will be discussed individually. One of the
nice aspects of the event-driven framework is that modules can automatically
indicate their interest in being registered for event handler notifications by sim-
ply implementing the event subscriber mixins described below. When a module
is loaded into the framework, it will automatically detect that it includes one or
more of the subscriber interfaces and automatically register the module with the
appropriate event notifiers. This makes it possible for modules to take certain
actions when specific events occur.

21

3.2.1 Exploit events

Event subscribers can be registered to be notified when events regarding ex-
ploitation occur. To register an exploit event subscriber, a call should be made
to framework.events.register exploit subscriber. This method should be
passed an instance of an object that includes the Msf::ExploitEvent mixin.
The type of event that this subscriber will be notified of is when an exploit suc-
ceeds. In the event that an exploit succeeds, the subscriber’s on exploit success
method will be called with the exploit instance that succeeded and the session
instance that it created.

To remove an event subscriber, a call should be made to
framework.events.remove exploit subscriber passing the object instance
that was used to add the subscriber in the first place.

3.2.2 General framework events

To receive event notifications about internal framework events, a general event
subscriber can be registered through the framework.events.register general subscriber
method. This method takes an instance of an object that includes the Msf::GeneralEventSubscriber
mixin. When a module is loaded into the framework instance, the on module load proc
will be called if it is non-nil and will be passed the reference name and class
associated with the newly loaded module. When a module instance is created,
the on module created proc will be called if it’s non-nil and will be passed the
newly created module instance.

To remove an event subscriber, a call should be made to
framework.events.remove general subscriber passing the object instance
that was used to add the subscriber in the first place.

3.2.3 Database events

One of the new additions to the framework is support for tracking hosts, services,
and other sorts of information. This is accomplished by using the database
tracking plugin and can be augmented through additional module and plugin
support. To receive notifications about database events, such as when a new
hsot or service is detected, a database event subscriber can be registered through
the framework.events.add db subscriber method. This method takes an
instance of an object that implements the Msf::DatabaseEvent mixins. When
a new host is detected a call will be made to the on db host method on all of
the registered database event subscribers. When a new service is detected, a
call will be made to the on db service method on all of the registered database
event subscribers.

22

To remove an event subscriber, a call should be made to
framework.events.remove db subscriber passing the object instance that
was used to add the subscriber in the first place.

3.2.4 Session events

To receive notifications about events pertaining to sessions, a session event sub-
scriber can be registered through the framework.events.add session subscriber
method. This method takes an instance of an object that implements the
Msf::SessionEvent mixin. When a new session is opened, the framework will
call into the subscriber’s on session open method with the session instance
that has just been opened as the first argument. When a session terminates,
the framework will call into the subscriber’s on session close method with
the session instance that is being closed.

To remove an event subscriber, a call should be made to
framework.events.remove session subscriber passing the object instance
that was used to add the subscriber in the first place.

3.3 Framework Managers

The framework core itself is composed of a few different managers that are
responsible for some of the basic aspects of the framework, such as module and
plugin management.

3.3.1 Module management

The module management aspect of the framework is one of its most integral
parts. The Msf::ModuleManager class is responsible for providing the interface
for loading modules and for acting as a factory for module instance creation.
The module manager itself can be accessed through the framework.modules
attribute. The loading of modules is accomplished by adding a search path to
the module manager by making a call to the add module path method. This
method will automatically load all of the modules found within the supplied
directory1.

Modules are symbolically identified by what is referred to as a reference name.
The reference name takes a form that is similar to a directory path and is par-
tially controlled by the filesystem path that the module is loaded from. An

1The module path must conform to the standard module directory layout, with the base
directory structure appearing similar to the modules sub-directory in the framework distribu-
tion

23

example of a reference name would be an exploit labeled windows/ftp/wsftpd.
This would mean that the exploit was loaded from exploits/windows/ftp/wsftpd.rb.
It is important to note that module’s must retain a namespace hierarchy that
mirrors the path in which they are located. For instance, the example described
previously would have the class declared as Msf::Exploits::Windows::Ftp::Wsftpd.
This is necessary so that the framework’s module manager knows what names-
pace to look in to see what class was added after loading the file. The reference
name of a module can be accessed through the refname attribute on both the
class of the module and its instances.

In order to help solve the potential for module name ambiguities across mod-
ule types, modules can also be referenced to by what is called a full reference
name. This name is the same as the reference name of the module but is pre-
fixed with the module’s type. For instance, the exploit windows/ftp/wsftpd
would become exploit/windows/ftp/wsftpd. The full reference named can be
accessed through the fullname attribute on both the class of the module and
its instances.

In order to make the module manager easy to use, each different module type is
broken down into a more basic class called a module set which is implemented
by the Msf::ModuleSet class. The purpose of a module set is to act as a
localized factory for each different module type (exploit, encoder, nop, etc).
Each type-specific module set can be accessed through either framework.type
or framework.modules.type. For example, if one wanted to enumerate exploit
modules, they would use the framework.exploits method to get access to the
exploit module set.

Module sets are implemented in the form of a hash that associates the reference
names of modules with their underlying classes. To create an instance of a
module, a call is made to the module set’s create method passing the reference
name of the module that should be instantiated. For example, to create an
instance of an exploit named windows/ftp/wsftpd, a call would be made as
shown in figure 3.3

framework.exploits.create(’windows/ftp/wsftpd’)

Figure 3.3: Creating an instance of a framework module

The table shown in figure 3.4 shows the relation between module types and
framework module set accessors.

To reload the contents of a module, a call can be issued to reload module
passing the module instance that should be reloaded. This will lead to the
framework re-reading the contents of the module’s underlying file path and
automatically creating a new instance of the module.

24

Module Type Accessor
MODULE ENCODER framework.encoders
MODULE EXPLOIT framework.exploits
MODULE NOP framework.nops
MODULE AUXILIARY framework.auxiliary
MODULE PAYLOAD framework.payloads

Figure 3.4: Module types and their framework accessors

3.3.2 Plugin management

One of the new features in the 3.0 version of the framework is the concept
of framework plugins. Unlike modules, framework plugins are meant to add
features to the framework or to change the behavior of existing aspects of the
framework. Plugins have a very loose definition in terms of the scope in which
they can operate. For instance, a plugin could add an entirely new module
type for use by the framework. Alternatively, a plugin could add commands to
the existing user interfaces that interact with the framework. A plugin could
also register custom event subscribers for doing things like automatically causing
Meterpreter to list the contents of a computer’s C drive when a new Meterpreter
session is created. The possibilities, as they say, are endless.

The plugin manager can be accessed through the framework.plugins accessor
which is an instance of the Msf::PluginManager class. To load a plugin, a
call can be made to framework.plugins.load with the path of the plugin that
is to be loaded. Optionally, a second parameter can be passed to the load
method that is a hash of option parameters that may be useful to the plugin,
such as LocalInput and LocalOutput handles for use with printing strings to
the screen for whatever medium is currently being used. The table shown in
figure 3.5 shows the pre-defined hash elements that can be passed in the option
hash.

Hash Element Description
LocalInput The local input class instance which implements the

Rex::Ui::Text::Input interface.
LocalOutput The local input class instance which implements the

Rex::Ui::Output interface.
ConsoleDriver The console driver instance of

Msf::Ui::Console::Driver.
WebDriver The console driver instance of Msf::Ui::Web::Driver.

Figure 3.5: Plugin optional constructor hash elements

All plugins are reference counted. This is to make it possible to implement

25

singleton plugins that could possibly be loaded more than once but will only
have one underlying instance. The reference count to an instance of a plugin is
automatically incremented each time load is called on it.

To unload a framework plugin, a call can be made to framework.plugins.unload
passing the instance of the plugin previously loaded as the first parameter. Since
all plugins are reference counted, a plugin will not actually be unloaded until
its reference count drops to zero.

For more detail on the implementation of framework plugins, please see chapter
7.

3.3.3 Session management

The session manager is used to track sessions created from within a framework
instance as the result of an exploit succeeding. The purpose of sessions is to
expose features to a programmer that allow it to be interacted with. For in-
stance, a command shell session allows programmers to send commands and
read responses to those commands through a well-defined API. For more infor-
mation on sessions and how they can be interacted with, please see chapter 8.
The session manager itself can be accessed through the framework.sessions
accessor and is an instance of the Msf::SessionManager class.

The primary purpose of the session manager is to provide an interface for reg-
istering new sessions and assigning them a unique session identifier as well as
allowing sessions to be deregistered when they are destroyed. The registering of
sessions with the framework session manager is accomplished by making a call
into the framework.sessions.register method which takes an instance of a
session as its argument. This method will assign the session a unique session
identifier and add it to the managed hash of sessions. Sessions can be enumer-
ated by making a call into framework.sessions.each sorted or by calling any
of the hash-compatible enumeration methods. To obtain the session instance
associated with a particular session identifier, the framework.sessions.get
method can be called with the session identifier to look up. When a session
is being destroyed, a call must be made to framework.sessions.deregister
passing the instance of the session being destroyed as the first argument.

3.3.4 Job management

Each framework instance supports running various tasks in the context of worker
threads through the concept of jobs. The job interface can be accessed through
the framework.jobs accessor which is an instance of the Rex::JobContainer
class. For more information on jobs, please refer to the job explanation in the
Rex documentation in section 2.4.

26

3.4 Utility Classes

Some classes in the framework core are intended to be used to make certain
tasks simpler without being out of scope of the core aspects of the framework.
These classes are described below.

3.4.1 Exploit driver

The Msf::ExploitDriver class encapsulates the task of running an exploit
module in terms of coordinating the validation of required module options, the
validation of target selection, the generation of a selected payload, and the
execution of exploit and payload setup and cleanup. These operations are what
has to be performed when attempting to execute an exploit.

An instance of an exploit driver is initialized as described in figure 3.7.

driver = Msf::ExploitDriver.new(framework)

driver.payload = payload_instance
driver.exploit = exploit_instance
driver.target_idx = 0

session = driver.run

Figure 3.6: Using the ExploitDriver class

When the run method is called, the first step is to validate the options required
by the payload and the exploit that have been selected. This is done by calling
the public validate method on the exploit driver instance. In the event that
options fail to validate or that a target index has not been properly selected, an
exception will be thrown to the caller. After validation has completed, the ex-
ploit’s TARGET data store element is set to the selected target index. From there,
an encoded version of the payload is generated by calling generate payload on
the exploit instance. Once completed, the exploit is set up by calling setup on
the exploit module instance and finally the actual exploit code is triggered by
calling exploit on the exploit module instance.

Once exploitation has completed, the exploit driver calls the stop handler
method on the payload module instance and then calls the cleanup method
on the exploit module instance.

The exploit driver can also be instructed to run the exploit in the context of
a job. When this is done, the underlying exploitation operation is done in the
context of a job worker thread by calling framework.jobs.start bj job. The
exploit driver can be told to use a job by setting the use job attribute to true.

27

3.4.2 Encoded payload

The purpose of the Msf::EncodedPayload class is to encapsulate the operation
of encoding a payload with an arbitrary set of requirements. To generate an
encoded payload, an instance of an Msf::EncodedPayload class must be created
by passing its constructor an instance of a payload as well as an optional hash
of requirements that will be used during the generation phase. This can be
accomplished by calling the class’ create method as shown in figure ??.

encoded = Msf::EncodedPayload.create(payload_instance,
’BadChars’ => "\x0a\0xd",
’Space’ => 400,
’Prepend’ => "\x41\x41",
’Append’ => "\xcc\xcc\",
’SaveRegisters’ => "edi",
’MinNops’ => 16)

Figure 3.7: Creating an instance of an EncodedPayload

Once an encoded payload instance has been created, the next step is to make a
call to the instance’s generate method which will return the encoded version
of the payload. After generation has occurred, the following attributes can be
accessed on the encoded payload instance in order to get information about the
now-encoded payload. Figure 3.8 shows the attributes and their purposes.

Attribute Description
raw The un-encoded raw payload buffer.
encoded The encoded payload buffer which may be equal to raw if

no encoder was used.
nop sled size The size of the NOP sled prepended to the encoded pay-

load. Zero if no NOPs were generated.
nop sled The NOP sled portion of the encoded payload, if any.
encoder The encoder module instance that was used to encode the

payload.
nop The nop module instance that was used to generate the

NOP sled, if any.

Figure 3.8: Msf::EncodedPayload instance attributes

To control the behavior of the encoded payload class, an optional hash can be
passed into the constructor. The table in figure 3.9 describes the options that
can be specified and the affect they have on behavior.

28

Hash Element Description
BadChars A string of bad characters to avoid when encoding.
Encoder The name of the preferred encoder to use.
MinNops The minimum number of NOPs to generate.
MaxNops The maximum number of NOPs to generate.
Space The amount of room left for use by the payload. If this

value is not specified, then NOP padding will not be per-
formed and there will be no restrictions on payload size.

SaveRegisters A white-space separated list of registers to save when gen-
erating the NOP sled.

Prepend Raw instructions or text to prepend to the encoded pay-
load.

Append Raw instructions or text to append to the encoded payload.

Figure 3.9: Msf::EncodedPayload constructor options

29

Chapter 4

Framework Base

The framework base is a library layer built on top of the framework core that
adds classes that make dealing with the framework easier. It also provides a
set of classes that could be useful to third party development tools that don’t
necessarily fit within the scope of the framework core itself. The classes that
compose the framework base are described in the following subsections. To use
the framework base library, a ruby script should require msf/base.

4.1 Configuration

One important aspect of a managed framework installation is the concept of
persistent configuration and methods for getting information about the struc-
ture of an installation, such as the root directory of the installation and other
types of attributes. To facilitate this, the framework base library provides the
Msf::Config class that has methods for obtaining various installation direc-
tory paths. It also supports the serialization of configuration files. The table
shown in figure 4.1 describes the different methods that can be used to obtain
configuration information.

4.2 Logging

The framework base library provides a wrapper class that can be used to con-
trol debug logging at an administrative level by providing methods for enabling
log sources and for controlling logs that are applied to sessions created from
within a framework instance. To initialize logging, a call must be made to
Msf::Logging.init which will register the log sources rex, core, and base as

30

Method Description
install root The installation’s root directory.
config directory The configuration directory (~/.msf3).
module directory install root + ’/modules’.
plugin directory install root + ’/plugins’.
log directory config directory + ’/logs’.
session log directory config directory + ’/logs/sessions’.
user module directory config directory + ’/modules’.
data directory install root + ’/data’.
config file config directory + ’/config’.
load Loads the contents of a configuration file and returns an

instance of a Rex::Parser::Ini object.
save Saves the supplied option hash to the configuration file

supplied as ’ConfigFile’ in the options hash or the con-
fig file by default.

Figure 4.1: Msf::Config accessor methods

being directed at framework.log as found in the Msf::Config.log directory.
Individual log sources can be subsequently enabled or disabled by making calls to
Msf::Logging.enable log source and Msf::Logging.disable log source, re-
spectively. When session logging is enabled, calls can be issued to start session log
and stop session log which operate on a provided session instance to start or
stop logging to a session-specific log file in the Msf::Config.session log directory
directory.

4.3 Serialization

To make life easier for framework programmers, the framework base library pro-
vides a class that can be used to serialize information about modules, such as
their description, options, and other information to a uniform, human readable
format. The class that provides this feature is the Msf::Serializer::ReadableText
class. For more information, please review the auto-generated API documenta-
tion on the Metasploit website.

4.4 Sessions

While the framework core has an abstract concept of sessions as described
through the Msf::Session base module, the framework base actually provides
some of the concrete implementations. This separation was done to eliminate

31

module-specific session implementations from the framework core as the core
should have no conceptual dependencies on modules that use it. The base li-
brary, on the other hand, is more of a facilitation layer for subscribers of the
framework. The two sessions currently implemented in the base library are the
CommandShell session and the Meterpreter session.

4.4.1 CommandShell

The command shell session implements the framework core
Msf::Session::Provider::SingleCommandShell interface against a connected
stream, such as a TCP connection. For more information about this mixin,
please read chapter 8.

4.4.2 Meterpreter

The meterpreter session implements the Msf::Session::Interactive and
Msf::Session::Comm mixins. This allows it to be operated through an interac-
tive user shell and also indicates to the framework that internet traffic can be
routed (pivoted) through the session by making use of it as a Comm socket fac-
tory. The session itself is merely an extension of the Rex::Post::Meterpreter
class which operates against a connected stream, such as a TCP connection.

4.5 Simplified Framework

The simplified framework provides methods that make the framework and the
different module types easier to use by providing wrapper methods that handle
most of the actions that would be common to a subscriber of the framework. To
create an instance of the simplified framework, the Msf::Simple::Framework.create
method should be called along with an optional hash. The return value is an in-
stance of an Msf::Framework class that has been extended by the Msf::Simple::Framework
mixin. Existing framework instances can also be simplified by calling the
Msf::Simple::Framework.simplify method with the existing framework in-
stance as the first argument. All module instances created from within a sim-
plified framework instance will automatically be simplified by the module type-
specific mixins.

The creation of a simplified framework instance automatically leads to the ini-
tialization of the Msf::Config class and the Msf::Logging class. Any exist-
ing configuration file is also automatically loaded. The default global module
directory (Msf::Config::module directory) and the user-specific module di-
rectory (Msf::Config::user module directory) are added as search paths to
the framework instance which leads to the loading of all modules within the two

32

directories. Finally, a general event subscriber is registered with the framework
instance that will be called whenever module instances are created within the
framework. This allows the simplified framework the opportunity to simplify
each created module instance.

Each module type has a simplified framework module mixin that is automati-
cally used to extend created module instances via the general event subscriber
described above. For example, when an exploit module instance is created,
the instance is extended by the Msf::Simple::Exploit mixin. Each different
module mixin provides a helper method or methods for driving that specific
module type’s primary action or actions. Furthermore, each module instance
has methods that can be used to save and restore module-specific configuration
elements through the save config and load config methods. Each module-
specific mixin is described individually below.

4.5.1 Auxiliary

The simplified auxiliary mixin provided in Msf::Simple::Auxiliary extends
each auxiliary module instance with a method called run simple. This method
takes a hash parameter that is used to control the execution of the auxiliary
module. It sets everything up, including the module’s datastore.

4.5.2 Exploit

The simplified exploit mixin provided in Msf::Simple::Exploit extends each
exploit module instance with a method called exploit simple. This method
takes a hash parameter that is used to control the exploitation of something by
creating an instance of an Msf::ExploitDriver class and doing all the required
initialization and configuration of the module prior to issuing the call to the
exploit driver’s run method. If the operation succeeds, the return value is
a session instance. Otherwise, an exception will be thrown or nil may be
returned. For more information about the hash elements that can be passed
in, please refer to the auto-generated API documentation on the Metasploit
website.

4.5.3 NOP

The simplified NOP mixin provided in Msf::Simple::Nop extends each nop
module instance with a method called generate simple. This method takes
the length of the sled generate and the hash of options that should be used for
the generation. On success, the return value is a buffer that is encoded using
the Msf::Simple::Buffer class using the format specified in the option hash

33

as the ’Format’ element. If no format is specified, the raw version of the NOP
sled is returned.

4.5.4 Payload

The simplified payload mixin provided in Msf::Simple::Payload extends each
payload module instance with a method called generate simple. This method
takes a hash of options that are used to generate a payload buffer. The elements
that can be used in the option hash can be found in the auto-generated API
documentation found on the Metasploit website. If the operation is success-
ful, the encoded payload buffer will be serialized to the format supplied in the
’Format’ hash element. If the format is not raw, any staged payloads will also
be appended to the serialized buffer.

34

Chapter 5

Framework Ui

The framework user interface library is used to encapsulate code common to
different user interface mediums to allow third party development and extension
of custom user interfaces separate from those distributed with the framework
itself. Each different user interface medium is encapsulated in an abstract driver
class, Msf::Ui::Driver that is designed to have an actual interface that is
specific to the underlying user interface medium being used.

The inherited driver base class simply defines three methods that are to be
common to all user interfaces. Those methods are run, stop, and cleanup.
Their names imply the actions that are to be performed. Each of the currently
defined user interface mediums will be explained individually in the following
sections. To use the framework ui library, a ruby script should require msf/ui.

35

Chapter 6

Framework Modules

The primary purpose of the Metasploit framework is to facilitate the develop-
ment of modules that can plug into the framework core and be shared with other
existing modules. For instance, an advanced encoder module can be plugged into
the framework and will be automatically applied to payloads of a compatible ar-
chitecture and platform. This makes it so there are zero code changes required
due to the fact that all modules conform to a well-defined interface through
which they can be interacted with by the framework. As another example, new
payloads can be developed and are immediately usable to all exploits without
modification. This eliminates the need to copy static payload blobs into exploits
as is most common with proof of concept exploits. This chapter is dedicated to
describing the interfaces that each module type exposes in order to provide an
understanding of what it takes to implement each module type.

At some level, all modules inherit from the module base class provided in
Msf::Module. This class implements all of the things that are common to Metas-
ploit framework modules, such as common accessors and attributes. When a
module is loaded into the framework, a copy of the class that gets added is made
which is what is used for future instantiations of the module. The copy class
then has some of its attributes set that allow the framework to look at some of
the module’s information at a glance without having to create an instance of it.
This information can be accessed through a set of class methods and attributes
that are described in figure 6.1.

To support generic initialization, each module defines its own custom informa-
tion hash that is eventually passed to the constructor of Msf::Module. This
information class is then assigned to the instance attribute named module info
and is then processed. The parts that are common to all modules are broken
down and transformed into uniform types that can be accessed through instance
methods. The same methods that are accessible through the module class can

36

Method Description
framework The framework instance that the module is associated

with.
type The module’s symbolic type. One of MODULE ENCODER,

MODULE EXPLOIT, MODULE NOP, MODULE PAYLOAD, or
MODULE RECON

fullname The complete symbolic name of the module including is
string type. For example: exploit/windows/ms03 026

rank The module’s integer rank to indicates its quality. The
rank is used by the framework when selecting which en-
coders, payloads, and NOP generators to use.

rank to s Returns the string representation of the module’s rank.
refname The module’s symbolic reference name. For example: win-

dows/ms03 026
orig cls The original, non-duplicated class that was loaded for the

module.
file path The file path that the module was loaded from.

Figure 6.1: Msf::Module class methods

also be used through the class instance (as shown in figure 6.1).

The table in figure 6.2 shows how the common module information hash ele-
ments are broken down into their respective data types and the methods that
can be used to access them.

Some of the information hash accessors also have helper methods that make
it easier to interact with them. For instance, the Arch hash element array
contained within the arch attribute can be serialized to a comma separated
string by calling arch to s. Architectures can also be enumerated by calling
each arch by passing it a block that accepts the architecture as a parameter.
It is also possible to check if a module supports an architecture by calling the
arch? method and passing it the architecture to check for as a parameter. Like
architectures, platforms can be serialized to a string by calling platform to s.

The Author hash element can also be converted to a comma separated string of
authors by calling author to s. The array of Msf::Author instances contained
within the author array attribute can be enumerated by calling each author
and passing it a block that takes an author instance as its first parameter.

The Msf::Module class also has some helper methods that allow users to quickly
check if a module is of a specific type by calling the <type>? method set. For
instance, if a caller wished to see if a module instance was an exploit, they could
call mod.exploit?.

Since the Rex library introduces the concept of socket communication facto-

37

Hash Element Accessor Type Description
Name name String The short name of the module.
Alias alias String An alias string for the refname of

the module.
Description description String A longer description of the mod-

ule.
Version version String The current revision of the de-

rived module.
License license String The license that the module has

been released under.
Author author Array An array of Msf::Author in-

stances.
Arch arch Array An array of architectures (like

ARCH X86).
Platform platform PlatformList An instance of a

Msf::PlatformList.
References references Array An array of Msf::Reference in-

stances.
Options options OptionContainer Options conveyed in the hash

are added to the module’s option
container.

AdvancedOptions options OptionContainer Options conveyed in the hash
are added to the module’s option
container as advanced options.

DefaultOptions options OptionContainer Previously registered options
have their default value modified.

Privileged privileged Bool Whether or not the module re-
quires or grants privileged access.

Compat compat Hash A hash of compatibility flags.

Figure 6.2: Msf::Module information hash accessors

38

ries (through the Comm class), each module has an attribute that can return
the Comm instance that was used or preferred. By default, all modules return
Rex::Socket::Comm::Local.

Each module has its own instance-based datastore which is an instance of the
Msf::ModuleDataStore class and can be accessed through the datastore acces-
sor. This mirrors the functionality provided by the global framework datastore
in that it provides a localized variable to value association for use in satisfying
required options. For instance, if a module requires the RHOST option to be set
to a value, the module’s data store must have a hash entry for RHOST. Alter-
natively, modules are designed to be able to fall back on the framework global
datastore if their localized datastore does not have a value for a variable being
checked for. This provides a basic level of variable/value inheritance. In some
cases, modules may wish to share their localized copies of the datastore with
other modules without having to taint the global datastore. This can be ac-
complished by calling the share datastore method on a module instance and
passing it a data store instance as the first argument.

Finally, framework modules are designed to be able to indicate their relative
compatibilities with other modules. For instance, an exploit may wish to in-
dicate that it is incompatible with a specific class of payload connection medi-
ums. This is accomplished through the Compat information hash element. After
the compatibility layer has been initialized, calls can be made to a module’s
compatible? method by passing another module instance as the argument.
If the supplied module instance is compatible with the instance that’s being
checked against, then true is returned.

This basic interface provides a generalized view into the behavior and expec-
tations of framework modules. However, all module types have well-defined
interfaces for dealing with the actions that they are meant to undertake. These
specific interfaces will be described in the following sections.

6.1 Auxiliary

Auxiliary modules are a new concept in Metasploit 3.0 and are intended to
help solve the problem of trying to use exploit modules in situations where they
should not be used. For instance, denial of service bugs are poor candidates
for exploits because they do not require the use of a payload and may not have
targets. Additionally, bugs that lead to the ability to read remote files or perform
other sorts of actions that also don’t require a payload have also been a poor
fit for exploits. To solve this problem, the concept of an auxiliary module was
introduced. Auxiliary modules are basically a generic module type. They have
a very loosely defined interface which makes it possible for developers to use
them to write modules that perform denial of service attacks, port scanning,
and other forms of information collection about a host or service. Auxiliary

39

modules are a great fit for use in collecting information that can be fed back
into the framework’s centralized database of hosts and services.

At an implementation level, all auxiliary modules must inherit from Msf::Auxiliary
at some level. In addition to inheriting from this base class, auxiliary modules
may also choose to use zero or more of the auxiliary and exploit mixins provided
by the framework. At the time of this writing, three mixins exist for auxiliary
modules. These mixins are:

1. Msf::Auxiliary::Dos

Provides common methods for Denial of Service auxiliary modules.

2. Msf::Auxiliary::Scanner

Provides a common interface for allowing users to specify subnets and to
have the auxiliary module scan those subnets rather than only being able
to specify a single IP address.

3. Msf::Auxiliary::Report

Provides a set of methods that can be used to report information about
a host or service to the framework’s database. This information can then
be used to fire off an exploit or other auxiliary modules automatically.

Auxiliary modules have a very simple interface. There is really only one method
that a developer of an auxiliary module would needs to implement. The run
method is intended to do just that: run the auxiliary module. The actions
performed within the run method are arbitrary, and the framework has no
method of checking if the run method succeeded or not.

To support the ability to run multiple different commands, auxiliary modules
are able to specify zero or more actions in their information hash. Actions are
analogous to targets which are used in exploits. An auxiliary module can query
the action selected by the user by calling the action method on itself.

In certain situations, developers may wish to offer additional commands that
aren’t as easily expressed through actions. In these cases, an arbitrary number
of console commands can be dynamically added to the command set whenever
the auxiliary module is used from the console interface. This is accomplished
by overriding the auxiliary commands method on the base class. This method
should return a hash that associates the name of a command with its description.
The developer should then implement a method on the auxiliary module that
is of the form cmd NAME where name is the hash key that was specified in the
commands hash. For example, to add a command called test:

def auxiliary_commands
{

40

"test" => "This is a test"
}
end

def cmd_test(*args)

end

6.2 Encoder

Encoder modules are used to generate transformed versions of raw payloads in a
way that allows them to be restored to their original form at execution time and
then subsequently executed. To accomplish this, most encoders will take the
raw form of the payload and run it through some kind of encoding algorithm,
like bitwise XOR. After the encoded version is generated, a decoding stub is
prefixed to the encoded version of the payload. This stub is responsible for
performing the inverse operation on the buffer attached to the decoder when
it executes. After the decoder restores the payload to its original form, it will
transfer execution to the start of the now normalized payload.

To support the above described encoder model, the Metasploit framework pro-
vides the Msf::Encoder class which inherits from the Msf::Module base class.
All encoders must inherit from the Msf::Encoder class at some level to ensure
that encoder-specific methods are included in the derived class.

Like the module information hash, encoders have some specialized information
hash elements that describe information about the encoder being used. The
information that encoder modules need to describe are the attributes of the
decoder which is conveyed through the Decoder information hash element. The
Decoder hash element references another hash that contains decoder specific
properties. These are described in the table shown in figure 6.3 along with their
types and module instance accessors.

Each of the methods described in figure 6.3 are designed to be overridable so
that derived encoder classes can dynamically choose the values returned by
them rather than being forced to initialize them in a static hash element. The
decoder hash itself can be accessed through the decoder hash method in case
an encoder module wishes to convey non-standard information in the hash for
later reference.

Perhaps of more importance that the decoder initialization vector is how the
encoding process is exposed. The base class Msf::Encoder implements an in-
stance method named encode which takes a buffer as the first argument, a
string of bad characters (or nil) as the second argument, and an optional en-
coder state as the third argument. The encode method wraps the encoding

41

Hash Element Accessor Type Description
Stub decoder stub String The raw stub to be prefixed to

encoded payloads.
KeyOffset decoder key offset Fixnum The offset to the key in the de-

coder stub.
KeySize decoder key size Fixnum The size of the decoder key in

bytes.
BlockSize decoder block size Fixnum The size of each encoding block

in bytes.
KeyPack decoder key pack String The byte-ordering to use when

packing the key. The default is
’V’.

Figure 6.3: Msf::Encoder Decoder information hash accessors

process in terms of selecting a decoder key, initializing the encoder state, and
then performing the actual encoding operation. Once completed, the encoded
buffer is returned to the caller. This is the primary method that the framework
uses when interacting with framework encoder modules.

6.2.1 encode

At a more detailed level, the encode method first creates an instance of a
Msf::EncoderState class if one was not supplied as the third argument of
encode. The purpose of the encoder state is to contain transient information
about a specific encoding operation in a non-global fashion. After creating the
encoder state instance, encode prepends any encoder-specific data to the raw
payload that may be necessary through the use of the prepend buf instance
method on the encoder module. This method is intended to be overridden and
used as necessary. By default, an empty string is returned, effectively leaving
the buffer in the same state that it was when it was passed in.

After prepending the raw buffer as necessary, the encode method then se-
lects a decoder key if the decoder key size method returns a non-zero value
and the encoder state currently has a nil key. This is accomplished by call-
ing the find key method on the encoder module which has a default imple-
mentation that is intended to work across all encoder modules. Once a key
has been selected, the init key method is called on the encoder state object
to set the state.key and state.orig key attributes. If no key is found, a
Msf::NoKeyError exception is raised.

The next step is to initialize some of the encoder state specific attributes by
calling the init state method on the encoder module instance which simply
stores the currently defined decoder key offset, size, and pack as attributes of

42

the encoder state as conveyed through the accessor methods on the encoder
module instance itself. The encoder state then has the string of bad characters
and the raw buffer set as attributes so that they can be contextually referenced
throughout the encoding process.

With the encoder state finally initialized, the next step is to begin the encoding
process by calling the encode begin method on the encoder module instance.
This method simply does nothing in its default implementation, but it is de-
signed to allow derived encoder modules to alter the attributes of the encoder
state prior to actually starting the encoding process. Once encode begin re-
turns, the encode method makes a call into the do encode method by passing it
the buffer, bad characters, and initialized encoder state. This is the method that
does the actual encoding work and could possibly be overridden if the default
implementation was not suitable for a given encoder.

Once do encode completes, the encode method makes a call into encode end
and passes the encoder state as an argument. The default implementation of
this method simply does nothing, but it is provided as a means by which an
encoder can hook into the finalization of the encoding process to alter the results
that will be returned to the caller.

6.2.2 do encode

The do encode method is the actual workhorse of the encoding process. It starts
by making a copy of the decoder stub by calling the encoder module instance’s
decoder stub method and passing it the encoder state as an argument. The
decoder stub method is the only one that takes an encoder state as an argument
as some encoders may generate dynamic decoder stubs depending on the state.

After obtaining the decoder stub, the next step is to substitute the packed
version of the decoder key at whatever offset was conveyed in the decoder infor-
mation hash through the KeyOffset and KeySize as well as the KeyPack. These
attributes are gotten through the encoder state’s attributes since it’s possible
that a derived encoder may wish to alter their values to be non-static between
iterations of the encoding process.

Finally, the actual block-based encoding occurs by simply walking the raw buffer
in block size chunks calling the encode block method on each chunk. This
method is passed the encoder state and the chunk to be encoded. By default,
the encode block method simply returns the block it is passed, but all encoders
are intended to override this method to return the encoded value of the block
based on the current encoder state.

After all the blocks have been encoded, the encoder state’s encoded attribute
will contain the encoded version of each blocked. The do encode method then
prepends the decoder stub to the front of the encoded buffer and then checks

43

to see if the complete stub + encoded buffer has any bad characters. If bad
characters are found, a Msf::BadcharError exception is raised to the caller
indicating what character and position the bad character was found at in the
encoded buffer. If all goes well, the do encode method returns true.

6.2.3 Helper methods

Internal the encoder module class are some instance helper methods that can be
used by derived classes to make things easier. For instance, the encoder module
base class has a method called has badchars? that can be used to check to
see if the supplied buffer has any of the supplied bad characters. If it does, the
index of the first bad character found is returned. Otherwise, nil is returned.

6.3 Exploit

Exploit modules are used to leverage vulnerabilities in a manner that allows
the framework to execute arbitrary code. This broad definition encompasses
things like command execution and code execution which are described in terms
of payloads in the framework nomenclature. Support for exploit modules is
provided through the Msf::Exploit base class. All exploit modules must derive
from the Msf::Exploit base class at some level. The primary interface exposed
by exploit modules to the framework are methods that can be used to check to
see if a target is vulnerable and to actually launch the exploit. These methods
will be discussed more later in this section.

Like the module information hash, exploit modules have a few exploit module
specific information hash elements that are used to control the way the frame-
work interacts with the exploit module and to control the exploit module itself.
These exploit module specific hash elements are described in the table shown in
figure 6.4.

The following subsections will describe the distinctions between different types
and stances of exploit modules as well as the interfaces that can be used to
operate upon them.

6.3.1 Stances

In the 3.0 version of the framework, exploit modules are designed to take a
stance that describes how they go about exploiting their vulnerability at a very
general level. While there is much debate in how this breakdown should occur,
the framework puts them into two basic categories called stances. The first
stance that an exploit can take is an aggressive stance. In this mode, an exploit

44

Hash Element Accessor Type Description
Stance stance Exploit::Stance One of

Exploit::Stance::Aggressive
or Exploit::Stance::Passive.

Targets targets Array An array of Msf::Target in-
stances.

DefaultTarget default target Fixnum The default target index to use,
if any.

Payload payload info Hash A hash of elements that controls
the exploit’s interaction with pay-
loads.

Figure 6.4: Msf::Exploit information hash elements

is actively triggering an exploit. The second stance that an exploit can take is a
passive stance. In this mode, an exploit is waiting for something to occur, such
as a client connecting to a server, so that the exploit can be triggered. Stances
are not designed to take locality into account. They merely break down the
manner in which the exploit will operate.

The framework uses the exploit’s stance to figure out whether how it should
go about executing the exploit method. For instance, passive exploits are
implied to take longer because they are waiting for some event to trigger the
exploitation. For that reason, it is better for the framework to run passive
exploits in the context of a job rather than blocking on their exploit routine.
Furthermore, passive exploits may be capable of exploiting more than one target
before they are completed.

For a module to indicate a passive stance it should initialize the Stance infor-
mation hash element to Msf::Exploit::Stance::Passive. If a module wishes
to take an aggressive stance, which is the default, it should initialize the Stance
information hash element to Msf::Exploit::Stance::Aggressive.

6.3.2 Types

To further categorize exploits, each exploit is described in terms of an exploit
type. The purpose of the exploit type is to indicate the locality of the exploit in
terms of whether or not it is exploiting a remote machine, a local application,
or is capable of operating as both types.

The remote exploit type, as indicated by Msf::Exploit::Type::Remote, is used
tell the framework that the exploit is designed to operate against a target other
than that of the local machine. While this doesn’t explicitly limit the exploit
to the use of network communication, that is typically what is implied. Exploit

45

modules can indicate that they are a remote exploit module by inheriting from
Msf::Exploit::Remote which inherits from Msf::Exploit.

The local exploit type, as indicated by Msf::Exploit::Type::Local, is used to
tell the framework that the exploit is designed to operate against an application
or service running on the local machine. This definition typically limits it to
exploitation by means other than network communication on the local machine.
Exploits modules can indicate that they are a local exploit module by inheriting
from Msf::Exploit::Local which inherits from Msf::Exploit.

The third exploit type, Msf::Exploit::Type::Omni, is used to indicate to
the framework that the exploit module is capable of operating both locally
and remotely. Exploit modules that fit this criteria should inherit from the
Msf::Exploit class directly.

6.3.3 Interface

To interact with exploit modules, the framework uses a well-defined interface
that is exposed by the exploit module base class. These methods, along with
their purposes, are described in the following subsections.

check

The exploit module check method is used to indicate whether or not a remote
machine is thought to be vulnerable. The default implementation of the check
method simply returns that it is unsupported by the exploit module. However,
a complete set of codes can be returned from the check method as shown in the
table in figure 6.5.

Check Code Description
Exploit::CheckCode::Safe The target is not exploitable.
Exploit::CheckCode::Detected The target service is running, but could

not be validated.
Exploit::CheckCode::Appears The target appears to be vulnerable.
Exploit::CheckCode::Vulnerable The target is vulnerable.
Exploit::CheckCode::Unsupported The exploit does not support check.

Figure 6.5: Codes returned from calls to exploit.check

46

exploit

The exploit module’s exploit method is the entry point that is used to kick off
the exploitation process. Prior to calling this method, the framework will have
ensured that all required options have been set and that a payload has been
generated for use by the exploit. After that, it’s up to the exploit to perform
whatever action is necessary to trigger the vulnerability in question.

setup

If a payload instance has been created and assigned to the exploit, the setup
method will initialize the payload’s handler by calling setup handler on it and
will start the handler by calling start handler. The setup method is called
by the framework prior to calling the exploit module’s exploit method.

cleanup

The cleanup method gives an exploit module the chance to remove any re-
sources that were created during the call to exploit and also gives the exploit
module base class a chance to call cleanup handler on the payload instance
that’s associated with the exploit, if there is one.

generate payload

This method is used by the framework to generate a payload using either a
passed payload instance as the argument or by using the payload instance
attribute of the exploit module instance. The return value is an instance of an
EncodedPayload that takes into account some of the limiting payload factors
described in the exploit module’s payload info hash. It also takes into account
any target-specific limiting payload factors. The resulting encoded payload is
assigned to the exploit module’s payload attribute.

generate single payload

This method generates an encoded payload using either the supplied payload
instance or the exploit’s assigned payload instance and returns it to the caller in
the form of an EncodedPayload instance. The encoded payload is not assigned
as an instance attribute.

47

regenerate payload

The regenerate payload method is simply a wrapper around the generate single payload
assuming the exploit’s payload instance as the first parameter.

6.3.4 Accessors and Attributes

Exploit modules have a number of accessors and attributes that can be used
by derived exploits modules to make their lives easier. These accessors and
attributes are described below.

compatible payloads

This method returns an array of payloads that are compatible with the cur-
rently selected target, or with all targets if one has not been selected. The array
returned is composed of a two-element array that consists of the name of the
reference name of the compatible payload and the class associated with the pay-
load. This method takes into account any architecture and platform restrictions
specified by the currently selected target, if any.

handler

The handler method is used by exploits to pass information on to the associated
payload that may be required or useful in detecting if a session has been created.
For instance, all find-style payloads require the original connection that was used
to trigger the vulnerability. By calling the handler method with the socket that
was used, the payload can check and see if a session has been created.

make nops

In some cases an exploit may need to generate a NOP sled outside of the context
of normal encoded payload generation. TO do this, a call can be make to the
make nops instance method with the length of the sled that should be generated.

nop generator

This method returns an instance of the first compatible nop generator.

48

nop save registers

This method returns the selected target’s NOP save register information if
the target attribute is non-nil and the target.save register attribute is
non-nil. Otherwise, the module information hash element’s SaveRegisters
value is returned.

payload

This attribute is an instance of a Msf::EncodedPayload after a call has been
made to generate payload.

payload append

This method returns the selected target’s payload append information if the
target attribute is non-nil and the target.payload append attribute is non-nil.
Otherwise, the value of the Append hash element in the payload info hash is
returned.

payload badchars

This method returns the value of the BadChars hash element in the payload info
hash is returned.

payload info

This method returns the value of the Payload module information hash element
that is used to convey module-specific payload restrictions.

payload instance

This attribute is set to the payload instance that was used to generate the
encoded payload conveyed in the payload attribute.

payload max nops

This method returns the selected target’s payload maximum NOP sled length if
the target attribute is non-nil and the target.payload max nops attribute is
non-nil. Otherwise, the value of the MaxNops hash element in the payload info
hash is returned.

49

payload min nops

This method returns the selected target’s payload minimum NOP sled length if
the target attribute is non-nil and the target.payload min nops attribute is
non-nil. Otherwise, the value of the MinNops hash element in the payload info
hash is returned.

payload prepend

This method returns the selected target’s payload append information if the
target attribute is non-nil and the target.payload append attribute is non-nil.
Otherwise, the value of the Append hash element in the payload info hash is
returned.

payload prepend encoder

This method returns the selected target’s payload prepend encoder information
if the target attribute is non-nil and the target.payload prepend encoder
attribute is non-nil. Otherwise, the value of the PrependEncoder hash element
in the payload info hash is returned.

payload space

This method returns the selected target’s payload maximum payload space if
the target attribute is non-nil and the target.payload space attribute is
non-nil. Otherwise, the value of the Space hash element in the payload info
hash is returned.

stack adjustment

This method returns the instructions associated with adjusting the stack pointer
by a fixed amount in an architecture independent fashion. First, the method
looks to see if a target-specific stack adjustment has been specified and if so uses
that. Otherwise, the method uses the stack adjustment specified as the value of
the StackAdjustment hash element in the payload info hash. From there, the
method tries to generate the instructions associated with the target or module
specific architecture.

50

target

This attribute returns the Msf::Target instance associated with the target
index that has been set in the module’s datastore through the TARGET option
value. If the index is invalid or nil, nil is returned.

This attribute is typically used by exploits to get target-specific addressing
information.

6.3.5 Mixins

One of the major design changes in the 3.0 version of the framework was the
introduction of exploit mixins. The purpose of exploits mixins are to reduce,
and in most cases eliminate, the duplicated code that is often shared between
exploit modules that attempt to leverage vulnerabilities found in specific proto-
col implementations. The mixins also provide a way to share code that is often
used independent of protocols, such as the generation of an SEH registration
record during the exploitation of an SEH overwrite. By placing this code in
mixins, the framework can augment the support at shared levels and introduce
things like normalized evasion without having to modify every existing exploit.
Encapsulation is very powerful.

These mixins are meant to be include’d in exploits that need them. More than
one mixin can be included in a single exploit.

As the framework grows, the number of exploit mixins that can be used by
modules will grow as well. This document will attempt to show some of the
existing mixins.

Msf::Exploit::Brute

The brute force mixin provides a flexible implementation that can be used in
a generic fashion for exploits that wish to support brute forcing. This mixin
implements the exploit method and detects if the currently selected target is
a brute force target. If it is, the mixin does all the required address walking
based on target specified start addresses and stop addresses. During each itera-
tion, the mixin calls the brute exploit method with the current address state
which should be implemented by the derived class. If the exploit method is
called with a target that is not intended for brute forcing, the mixin calls the
single exploit method.

51

Msf::Exploit::Egghunter

The purpose of the egghunter mixin is to encapsulate the generation of an archi-
tecture and platform specific egghunter as provided by the Rex::Exploitation::Egghunter
class. This feature is provided by the mixin’s generate egghunter method
which takes into account the currently selected target’s platform and architec-
ture.

Msf::Exploit::Remote::DCERPC

The DCERPC mixin provides methods that are useful to exploits that attempt
to leverage vulnerabilities in DCERPC applications. It also provides a unified
evasion interface that makes it so any exploits that use the mixin can make use
of multi-context bind evasion and packet fragmentation.

This mixin automatically registers the RHOST and RPORT options. It also registers
two advanced options, DCEFragSize and DCEMultiBind.

Msf::Exploit::Remote::Ftp

The FTP mixin provides a set of methods that are useful when interacting with
an FTP server, such as logging into the server and sending some of the basic
commands. This mixin includes the Msf::Exploit::Remote::Tcp mixin.

This mixin automatically registers the RHOST, RPORT, USER, and PASS options.

Msf::Exploit::Remote::HttpClient

The HTTP client mixin wraps some of the methods for creating an instance of a
Rex::Proto::Http::Client such that derived exploits can simply call connect
on their module instance to establish an HTTP connection to a remote server.
This mixin also automatically registers the RHOST, RPORT, and VHOST options.

Msf::Exploit::Remote::HttpServer

The HTTP server mixin wraps the creation or re-use of a local HTTP server
that is used in the exploitation of HTTP clients, like web-browsers. This mixin
also includes the Msf::Exploit::Remote::TcpServer mixin.

52

Msf::Exploit::Remote::SMB

The SMB mixin implements methods that are useful when exploiting vulnerabil-
ities over the SMB protocol. It provides methods for connecting and logging into
an SMB server as well as other helper methods for operating on the SMB con-
nection once established. This mixin includes the Msf::Exploit::Remote::Tcp
mixin.

This mixin automatically registers the RPORT, SMBDirect, SMBUSER, SMBPASS,
SMBDOM, and SMBNAME options. It also registers the SMBPipeWriteMinSize,
SMBPipeWriteMaxSize, SMBPipeReadMinSize, and SMBPipeReadMaxSize ad-
vanced options.

Msf::Exploit::Remote::Tcp

The TCP mixin implements a basic TCP client interface that can be used in
a generic fashion to connect or otherwise communicate with applications that
speak over TCP.

This mixin automatically registers the RPORT, RHOST, and SSL options.

Msf::Exploit::Remote::TcpServer

The TCP server mixin implements a basic TCP server that can be used to
exploit vulnerabilities in clients that speak over TCP.

This mixin automatically registers the SRVHOST and SRVPORT options.

Msf::Exploit::Remote::Udp

The UDP mixin implements a basic UDP client interface that can be used in
a generic fashion to connect or otherwise communicate with applications that
speak over UDP.

This mixin automatically registers the RPORT, RHOST, and SSL options.

Msf::Exploit::Seh

The SEH mixin implements some wrapper methods that can be used by exploits
that leverage the SEH overwrite exploitation vector. The purpose of this mixin
is to wrap the generation of SEH registration records in such a way that it’s
possible to take into account higher evasion levels. This is accomplish by using
the Rex::Exploitation::Seh class.

53

This mixin automatically registers the DynamicSehRecord advanced option.

6.4 Nop

NOP generator modules are used to create a string of instructions that have no
real affect when executed on a machine other than altering the state of registers
or toggling processor flags. All nop modules must inherit from the Msf::Nop
base class at some level. Nop modules are fairly simplistic when compared to
the other types of modules in the framework. There are only two methods that
the framework uses when dealing with nop modules.

6.4.1 generate sled

The generate sled method performs the action that the name implies. It takes
the size of the NOP sled to generate as the first argument and a hash of optional
parameters as the second argument. The hash controls some of the behaviors
of the NOP generator. The table shown in figure 6.6 shows the hash elements
that may be passed by the framework to generate sled.

Hash Element Type Description
Random Bool Indicates that random NOP generation should be

used.
SaveRegisters Array An array of architecture-specific registers that

should not be touched by instructions generated
in the NOP sled.

BadChars String The string of bad characters, if any, that should
be avoided by the NOP sled.

Figure 6.6: Msf::Nop generate sled optional hash arguments

Once sled generation has completed, the return value from generate sled the
the NOP sled buffer if it succeeds.

6.4.2 nop repeat threshold

This method simply returns the default number of times to attempt to find a
valid NOP byte when generating the NOP sled. The default is 10000. This is
primarily used as a reference for nop modules during sled generation.

54

6.5 Payload

Payload modules provide the framework with code that can be executed after
an exploit succeeds in getting control of execution flow. Payloads can be either
command strings or raw instructions, but in the end they boil down into code
that will be executed on the target machine. To provide this feature-set, the
framework offers the Msf::Payload base class that implements routines that
are common to all payloads as well as providing some helpful attributes.

One of the major differences between payload modules and other types of mod-
ules in the framework is that they are a composition of a few different mixins
that lead to a complete payload feature set. Payloads are at their base an imple-
mentation of the Msf::Payload class. However, they also include the support
necessary to handle the client half of any connections that the payload might
make through handlers. Handlers will be discussed in more detail later in this
section. Aside from handlers, payloads are also broken down into three sepa-
rate payload types: singles, stagers, and stages. These payload types will be
discussed in more detail later in this chapter.

Furthermore, unlike other framework modules, payload modules will not neces-
sarily correspond one-to-one with the module names that can be used within the
framework. This is because the framework will automatically generate permuta-
tions of different module types so that they can be used in various combinations
without having to be linked together statically. This is especially useful for
staged payloads because it is possible for stagers and stages to be automatically
merged together at load time rather than having to statically build an associa-
tion in the module files. This is a major enhancement from the 2.x framework
version.

To better help with visualizing the payload hierarchy, the diagram in figure 6.7
shows the class hierarchy of a particular type of payload known as a staged
payload.

6.5.1 Interface

The framework uses a well-defined, uniform interface to work with payload
modules. Like other modules, payload modules also have module-specific infor-
mation hash elements. The table shown in figure 6.8 shows the elements that
are specific to payload module information hash and the accessors that can be
used to access them.

Using the payload-specific information, the framework drives the payload class
by using a specific set of methods. These methods are described in detail below.

55

Figure 6.7: Staged payload class hierarchy

compatible convention?

This method checks to see if the supplied staging convention is compatible
with the current payload module’s staging convention. If the current payload’s
staging convention is undefined (as would be the case for a non-staged payload)
or the conventions match, then true is returned. Alternatively, if the current
payload’s type is that of a stager and the supplied convention is undefined, then
true is also returned. In every other case, false is returned.

compatible encoders

This method returns an array of compatible encoders where each element in
the array is an array with two elements that contains the reference name of the
encoder and the encoder’s module class.

56

Hash Element Accessor Type Description
BadChars badchars String The string of bad characters for

this payload, if any.
SaveRegisters save registers Array An array of architecture specific

registers that should be saved
when using this payload.

Payload module info[’Payload’] Hash A hash of information specific to
this payload.

Convention convention String The staging convention used by
this payload, if any.

SymbolLookup symbol lookup String The method used to resolved
symbols by this payload, if any.

Handler handler klass Msf::Handler::Xxx The handler class to be
used with this payload, or
Msf::Handler::None.

Session session Msf::Session::Xxx The session class to create when
the payload succeeds.

Figure 6.8: Msf::Payload information hash accessors

compatible nops

This method returns an array of compatible NOP generators where each element
in the array is an array with two elements that contains the reference name of
the NOP generator and the nop’s module class.

connection type

This method returns the type of connection being used for this payload as
derived from the payload’s handler.

generate

This method causes the underlying payload to be generated. This method works
by calling the payload method on the payload module instance and creating
a duplicate copy of it. From there, any defined variables are substituted as
conveyed through the offsets attribute. The resultant substituted buffer is
then returned to the caller.

57

payload type

This method returns the type of the payload that is implemented by the derived
class. This can be one of Msf::Payload::Type::Single, Msf::Payload::Type::Stager,
or Msf::Payload::Type::Stage.

size

This method returns the size of the payload as returned by a call to generate.

staged?

This method returns true if the payload type is either Stager or Stage.

substitute vars

This method substitutes variables using the offsets hash as a guide. It also
calls replace var prior to doing substitution which gives derived classes a
chance to do custom variable substitution prior to using built-in facilities.

validate

This method wraps the call to the payload’s option container’s validate method.

6.5.2 Types

Framework payloads are broken down into three distinct payload types. The
first type of payload that can be implemented is referred to as a single payload.
Single payloads are self-contained, single stage payloads that do no undergo a
staging process. An example of a typical single payload is one that connects back
to an attacker and supplies them with a shell without any intermediate staging.
The second type of payload is referred to as a stager. Stages are responsible for
connecting back to the attacker in some fashion and processing a second stage
payload. The third type of payload is referred to as a stage and it is what’s
executed by a stager payload. These three payload types allow the framework
to dynamically generated various combinations of payloads.

58

Single

As described above, single payloads are self-contained, single-stage payloads that
perform one logical task without requiring any secondary code. Single payloads
are the simplest of the three payload types because they correlate one-to-one
with the payloads that end up being generated by the framework.

For single payloads, the module information hash’s Payload hash element will
contain a sub-hash with a few key elements. The table shown in figure 6.9
describes the hash elements that are used by the framework and the accessors
that are used to obtain them.

Hash Element Accessor Type Description
Payload payload String The raw payload associated with

this payload module.
Offsets offsets Hash An array of variables that should

be substituted at specific offsets
based on the module’s datastore.

Figure 6.9: Payload information sub-hash accessors

For single payloads, the Payload hash typically contains a Payload sub-hash
element that actually contains the raw payload. This is illustrated below:

{
’Payload’ =>

{
’Payload’ => "\xcc\xcc\xcc",
’Offsets’ => ...

}
}

Stage

A stage payload is an implementation of a connection-independent task like
spawning a command shell or running an arbitrary command. Stage payloads
are combined with various framework stagers to produce a set of connection-
oriented multi-stage payloads. This is done automatically by the framework
by associating stage payloads with stagers that have a compatible staging con-
vention. The staging convention describes the manner in which connection
information is passed from the stager to the stage in terms of what register
might hold a file descriptor, for instance. Stages and stagers are also matched
up by their symbol lookup convention if necessary so that stages can assume
that certain locations in memory will hold routines that may be useful.

59

Stage payloads convey their raw payload contents in relation to the Stage mod-
ule information hash element. The sub-hash elements are similar to the single-
style payloads in that it has both a Payload and an Offsets element.

Stage payloads are meaningless unless there is a compatible stager.

Stager

A stager payload is an implementation of a payload that establishes some com-
munication channel with the attacker to read in or otherwise obtain a second
stage payload to execute. For example, a stager might connection back to the
attacker on a defined port and read in code to execute.

Stagers convey their raw payload contents in relation to the Stager module
information hash element. The sub-hash elements are similar to single-style
payloads in that it has both a Payload and an Offsets element.

Furthermore, staged payloads have some extra accessor methods that single
payloads do not. For instance, the stager’s payload and offsets can be obtained
through the payload and offsets accessors. The stage’s payload and offsets
can be obtained through the stage payload and stage offsets accessors.

The code below shows how those hash elements would be set up:

{
’Stager’ =>

{
’Payload’ => "\xcc\xcc\xcc",
’Offsets’ => ...

},
’Stage’ =>

{
’Payload’ => "\xcc\xcc\xcc",
’Offsets’ => ...

}
}

6.5.3 Handlers

Handles are one of the critical components of a payload. They are responsible for
handling the attacker’s half of establishing a connection that might be created
by the payload being transmitted via an exploit. The different handlers will be
discussed in detail later in this subsection.

Handlers themselves act as mixins that get merged into an actual payload mod-

60

ule class. The framework interacts with handlers through a well-defined inter-
face. Prior to initiating an exploit, the framework will call into the payload
handler’s setup handler and start handler methods that will lead to the ini-
tialization of the handler in preparation for a payload connection. When a
connection arrives, the handler calls the handle connection method on the
payload instance. This method is intended to be overridden as necessary by the
payload to do custom tasks. For instance, staged payloads will initiate the trans-
fer of the second stage over the established connection and then call the default
implementation which leads to the creation of a session for the connection.

When an exploit has finished, the framework will call into the payload handlers
stop handler and cleanup handler methods to stop it from listening for future
connections.

Bind TCP

The bind TCP handler is provided through Msf::Handler::BindTcp. It will
attempt to establish a connection to a target machine on a given port (specified
in LPORT). If a connection is established, a call is made into handle connection
passing along the socket associated with the connection.

Find port

The find port handler is provided by the Msf::Handler::FindPort class. When
an exploit calls the handler method with a socket connection, the find port
handler will attempt to see if the socket has now been re-purposed for use by
the payload. The find port handler is meant to be used for payloads that search
for a socket by comparing peer port names relative to the target machine.

Find tag

The find port handler is provided by the Msf::Handler::FindTag class. When
an exploit calls the handler method with a socket connection, the find port
handler will attempt to see if the socket has now been re-purposed for use by
the payload. The find tag handler is meant to be used for find socket style
payloads that search for a socket based on the presence of a tag on the wire.

None

If a payload does not establish a connection of any sort, the Msf::Handler::None
handler is used.

61

Reverse TCP

The reverse TCP handler is provided by the Msf::Handler::ReverseTcp class.
It will listen on a port for incoming connections and will make a call into
handle connection with the client sockets as they do.

62

Chapter 7

Framework Plugins

The 3.0 version of the framework offers a new type of framework concept which
is that of the framework plugin. Unlike modules, framework plugins are designed
to alter or augment the framework itself. The scope under which plugins fall
is intentionally very broad as to encourage free flowing creativity with what
they might be capable of doing. The interface for a plugin is intentionally very
simple. All plugins must exist under the Msf::Plugin namespace and they must
inherit the Msf::Plugin base class. Plugins are loaded into the framework by
calling framework.plugins.load with a file path that contains the plugin. The
framework will then take care of loading the plugin and creating an instance of
the class found within the file specified, assuming the class was added to the
Msf::Plugin namespace.

When the framework creates an instance of a plugin, it calls the plugin’s con-
structor and passes it the framework instance that it’s being created from. It also
passes along a hash of arbitrary parameters, some of which have a well-defined
purpose as described in the chapter on the plugin manager in the framework
core documentation. Alternatively, a plugin could be passed custom initializa-
tion parameters through the options hash.

To understand the types of things a framework plugin is capable of, a few differ-
ent theoretical examples will be enumerated in this chapter. The first example
would be a plugin that simply adds a new command to the console interface
when loaded that performs some simple task. The sample plugin included with
the default distribution of the framework illustrates how this can be accom-
plished. A more advanced plugin might automate some of the actions taken
when a Meterpreter session is created, such as by automatically downloading
the remote machine’s password hashes and passing them off to a cracking pro-
gram.

Another example of a plugin would be introducing an entirely new module type

63

into the framework. This would be accomplished by extending the existing
framework instance to support accessors for dealing with the new module type.

64

Chapter 8

Framework Sessions

The typical end-game for an exploit is to provide the attacker with some type of
session that allows them to run commands or perform other actions on a target
machine. In most cases, this session is a typical command interpreter that
has had its input and output piped over a socket connection to the attacker.
However, a command shell in and of itself is no particularly automatable unless
wrapped in a class that allows access to the shell from the level of a command
script. It is for this reason that the 3.0 version of the framework emphasizes
generalized session classes that can be used by the framework, plugins, and
external scripts to automate the process of controlling a session that is created
after an exploit succeeds.

To provide an extensible level of automation control, framework sessions can im-
plement one or more of the provider mixins found under the Msf::Session::Provider
namespace. The current distribution of the framework provides four basic
provider interfaces that can be implemented by specific sessions.

1. MultiCommandExecution

This interface provides methods that can be used to execute multiple
simultaneous commands on the target machine. This interface is a super-
set of the SingleCommandExecution interface.

2. MultiCommandShell

This interface provides methods for executing multiple command shells
simultaneously on the target machine. This interface is a super-set of the
SingleCommandShell interface.

3. SingleCommandExecution

This interface provides methods for executing a single command on the
target machine.

65

4. SingleCommandShell

This interface provides methods for executing a single command shell on
the target machine.

By implementing one or more of these methods, sessions can be made program-
matically automatable at the most basic level. Aside from the standard inter-
faces, sessions can also optionally implement the Msf::Session::Comm mixin
which is intended to be used for channeling network traffic through a remote
machine. Sessions that implement the Msf::Session::Comm mixin can be used
in conjunction with the switch board routing table present in the Rex library.

At the time of this writing, there are two basic session implementations that
are found in the framework base library. These two sessions are described in
the following sections.

8.1 Command Shell

The command shell session provided through Msf::Sessions::CommandShell
implements the Msf::Session::Provider::SingleCommandShell interface. The
methods used to interact with the shell are simply tunneled over the stream as-
sociated with the remote side of the connection. Any payload that renders a
command shell should return an instance of this session.

8.2 Meterpreter

The meterpreter session provided through Msf::Sessions::Meterpreter im-
plements the Msf::Session::Comm interface and is also capable of implementing
some of the other automated interfaces. By implementing the Comm interface,
all meterpreter sessions can be used for pivoting network traffic.

66

Chapter 9

Methodologies

One of the most critical things to understand prior to attempting to write a
module for the framework are some of the methodologies that should be under-
taken. The goal of the 3.0 version of the framework is to make modules easier
to implement and at the same time make them more robust. With that goal
in mind, all programmers wishing to write framework modules should heed the
advice from this chapter.

First and foremost, modules should be simple. In the event that a module is
becoming complicated or large, it may be best to take a step back and see if any
of the code being put into it might be better generalized in a mixin that could
later be shared with other modules. This is especially true in the event that an
exploit is dealing with a protocol that may later be useful to other exploits. An
equally true case is when an exploit is attempting to trigger a vulnerability that
has a generalized approach that could be applied to other exploit modules.

Secondly, modules should be clean. One of the key factors when doing any sort
of development is to ensure consistency in both design and implementation.
This applies not only to naming schemes but also to things like indention. If a
module has inconsistent indention and/or naming schemes, its readability will
be drastically reduced. Every programmer is entitled to their own coding style,
but they should be sure to stick with it throughout the development of a given
unit.

Finally, encapsulation is king. If a module needs to perform an action that could
perhaps be changed to a different algorithm at a later date, encapsulating the
operation in a generalized interface is a great way to ensure that code does not
have to be rewritten or otherwise altered in the future.

67

Appendix A

Samples

This chapter contains various samples that illustrate how the framework and
other libraries can be interacted with to perform various tasks. The source code
to these samples can be found in the documentation directory that is included
with all releases of the 3.0 version of the framework.

A.1 Framework

This section contains samples specific to interacting with the framework itself.

A.1.1 Dumping module info

This sample demonstrates how a module’s information can be easily serialized
to a readable format.

#!/usr/bin/ruby

$:.unshift(File.join(File.dirname(__FILE__), ’..’, ’..’, ’..’,

’lib’))

require ’msf/base’

if (ARGV.empty?)

puts "Usage: #{File.basename(__FILE__)} module_name"

exit

end

framework = Msf::Simple::Framework.create

begin

68

Create the module instance.

mod = framework.modules.create(ARGV.shift)

Dump the module’s information in readable text format.

puts Msf::Serializer::ReadableText.dump_module(mod)

rescue

puts "Error: #{$!}\n\n#{$@.join("\n")}"

end

A.1.2 Encoding the contents of a file

This sample demonstrates how a file can be encoded using a framework encoder.

#!/usr/bin/ruby

$:.unshift(File.join(File.dirname(__FILE__), ’..’, ’..’, ’..’,

’lib’))

require ’msf/base’

if (ARGV.empty?)

puts "Usage: #{File.basename(__FILE__)} encoder_name file_name format"

exit

end

framework = Msf::Simple::Framework.create

begin

Create the encoder instance.

mod = framework.encoders.create(ARGV.shift)

puts(Msf::Simple::Buffer.transform(

mod.encode(IO.readlines(ARGV.shift).join), ARGV.shift || ’ruby’))

rescue

puts "Error: #{$!}\n\n#{$@.join("\n")}"

end

A.1.3 Enumerating modules

This sample demonstrates enumerating all of the modules in the framework and displays their
module type and reference name.

#!/usr/bin/ruby

$:.unshift(File.join(File.dirname(__FILE__), ’..’, ’..’, ’..’,

’lib’))

require ’msf/base’

framework = Msf::Simple::Framework.create

Enumerate each module in the framework.

69

framework.modules.each_module { |name, mod|

puts "#{mod.type}: #{name}"

}

A.1.4 Running an exploit using framework base

This sample demonstrates using the framework core directly to launch an exploit. It makes
use of the simplified exploit wrapper method provided by the Msf::Simple::Exploit mixin.

#!/usr/bin/ruby

$:.unshift(File.join(File.dirname(__FILE__), ’..’, ’..’, ’..’,

’lib’))

require ’msf/base’

if (ARGV.length == 0)

puts "Usage: #{File.basename(__FILE__)} exploit_name payload_name OPTIONS"

exit

end

framework = Msf::Simple::Framework.create

exploit_name = ARGV.shift || ’test/multi/aggressive’

payload_name = ARGV.shift || ’windows/meterpreter/reverse_tcp’

input = Rex::Ui::Text::Input::Stdio.new

output = Rex::Ui::Text::Output::Stdio.new

begin

Initialize the exploit instance

exploit = framework.exploits.create(exploit_name)

Fire it off.

session = exploit.exploit_simple(

’Payload’ => payload_name,

’OptionStr’ => ARGV.join(’ ’),

’LocalInput’ => input,

’LocalOutput’ => output)

If a session came back, try to interact with it.

if (session)

output.print_status("Session #{session.sid} created, interacting...")

output.print_line

session.init_ui(input, output)

session.interact

else

output.print_line("Exploit completed, no session was created.")

end

rescue

output.print_error("Error: #{$!}\n\n#{$@.join("\n")}")

end

70

A.1.5 Running an exploit using framework core

This sample demonstrates using the framework core directly to launch an exploit. It uses the
framework base Framework class so that the distribution module path is automatically set,
but relies strictly on framework core classes for everything else.

#!/usr/bin/ruby

$:.unshift(File.join(File.dirname(__FILE__), ’..’, ’..’, ’..’,

’lib’))

require ’msf/base’

if (ARGV.length == 0)

puts "Usage: #{File.basename(__FILE__)} exploit_name payload_name OPTIONS"

exit

end

framework = Msf::Simple::Framework.create

exploit_name = ARGV.shift || ’test/multi/aggressive’

payload_name = ARGV.shift || ’windows/meterpreter/reverse_tcp’

input = Rex::Ui::Text::Input::Stdio.new

output = Rex::Ui::Text::Output::Stdio.new

begin

Create the exploit driver instance.

driver = Msf::ExploitDriver.new(framework)

Initialize the exploit driver’s exploit and payload instance

driver.exploit = framework.exploits.create(exploit_name)

driver.payload = framework.payloads.create(payload_name)

Import options specified in VAR=VAL format from the supplied command

line.

driver.exploit.datastore.import_options_from_s(ARGV.join(’ ’))

Share the exploit’s datastore with the payload.

driver.payload.share_datastore(driver.exploit.datastore)

Initialize the target index to what’s in the exploit’s data store or

zero by default.

driver.target_idx = (driver.exploit.datastore[’TARGET’] || 0).to_i

Initialize the exploit and payload user interfaces.

driver.exploit.init_ui(input, output)

driver.payload.init_ui(input, output)

Fire it off.

session = driver.run

If a session came back, try to interact with it.

if (session)

output.print_status("Session #{session.sid} created, interacting...")

output.print_line

session.init_ui(input, output)

71

session.interact

else

output.print_line("Exploit completed, no session was created.")

end

rescue

output.print_error("Error: #{$!}\n\n#{$@.join("\n")}")

end

A.2 Framework Module

This section shows some sample framework modules.

A.2.1 Auxiliary

This sample illustrates a very basic auxiliary module that displays the currently selected action
and dynamically registers a command that will show up when the auxiliary module is used.

class Auxiliary::Sample < Msf::Auxiliary

def initialize

super(

’Name’ => ’Sample Auxiliary Module’,

’Version’ => ’$Revision: 4419 $’,

’Description’ => ’Sample Auxiliary Module’,

’Author’ => ’hdm’,

’License’ => MSF_LICENSE,

’Actions’ =>

[

[’Default Action’],

[’Another Action’]

]

)

end

def run

print_status("Running the simple auxiliary module with action #{action.name}")

end

def auxiliary_commands

return { "aux_extra_command" => "Run this auxiliary test commmand" }

end

def cmd_aux_extra_command(*args)

print_status("Running inside aux_extra_command()")

end

end

72

A.2.2 Encoder

This sample illustrates a very basic encoder that simply returns the block that it’s passed.

module Msf

module Encoders

class Sample < Msf::Encoder

def initialize

super(

’Name’ => ’Sample encoder’,

’Version’ => ’$Revision: 3215 $’,

’Description’ => %q{

Sample encoder that just returns the block it’s passed

when encoding occurs.

},

’Author’ => ’skape’,

’Arch’ => ARCH_ALL)

end

#

Returns the unmodified buffer to the caller.

#

def encode_block(state, buf)

buf

end

end

end

end

A.2.3 Exploit

This exploit sample shows how an exploit module could be written to exploit a bug in an
arbitrary TCP server.

module Msf

class Exploits::Sample < Msf::Exploit::Remote

#

This exploit affects TCP servers, so we use the TCP client mixin.

#

include Exploit::Remote::Tcp

def initialize(info = {})

super(update_info(info,

’Name’ => ’Sample exploit’,

’Description’ => %q{

This exploit module illustrates how a vulnerability could be exploited

in an TCP server that has a parsing bug.

},

73

’Author’ => ’skape’,

’Version’ => ’$Revision: 3215 $’,

’Payload’ =>

{

’Space’ => 1000,

’BadChars’ => "\x00",

},

’Targets’ =>

[

Target 0: Windows All

[

’Windows Universal’,

{

’Platform’ => ’win’,

’Ret’ => 0x41424344

}

],

],

’DefaultTarget’ => 0))

end

#

The sample exploit just indicates that the remote host is always

vulnerable.

#

def check

return Exploit::CheckCode::Vulnerable

end

#

The exploit method connects to the remote service and sends 1024 A’s

followed by the fake return address and then the payload.

#

def exploit

connect

print_status("Sending #{payload.encoded.length} byte payload...")

Build the buffer for transmission

buf = "A" * 1024

buf += [target.ret].pack(’V’)

buf += payload.encoded

Send it off

sock.put(buf)

sock.get

handler

end

end

end

74

A.2.4 Nop

This class implements a very basic NOP sled generator that just returns a string of 0x90’s for
the supplied sled length.

module Msf

module Nops

class Sample < Msf::Nop

def initialize

super(

’Name’ => ’Sample NOP generator’,

’Version’ => ’$Revision: 3215 $’,

’Description’ => ’Sample single-byte NOP generator’,

’Author’ => ’skape’,

’Arch’ => ARCH_X86)

end

#

Returns a string of 0x90’s for the supplied length.

#

def generate_sled(length, opts)

"\x90" * length

end

end

end

end

A.2.5 Payload

This sample payload is designed to trigger a debugger exception via int3.

module Msf

module Payloads

module Singles

module Sample

include Msf::Payload::Single

def initialize(info = {})

super(update_info(info,

’Name’ => ’Debugger Trap’,

’Version’ => ’$Revision: 3215 $’,

’Description’ => ’Causes a debugger trap exception through int3’,

’Author’ => ’skape’,

’Platform’ => ’win’,

’Arch’ => ARCH_X86,

’Payload’ =>

{

’Payload’ => "\xcc"

75

}

))

end

end

end

end

end

A.3 Framework Plugin

A.3.1 Console user interface plugin

This class illustrates a sample plugin. Plugins can change the behavior of the framework by
adding new features, new user interface commands, or through any other arbitrary means.
They are designed to have a very loose definition in order to make them as useful as possible.

module Msf

class Plugin::Sample < Msf::Plugin

###

#

This class implements a sample console command dispatcher.

#

###

class ConsoleCommandDispatcher

include Msf::Ui::Console::CommandDispatcher

#

The dispatcher’s name.

#

def name

"Sample"

end

#

Returns the hash of commands supported by this dispatcher.

#

def commands

{

"sample" => "A sample command added by the sample plugin"

}

end

#

This method handles the sample command.

#

def cmd_sample(*args)

print_line("You passed: #{args.join(’ ’)}")

end

end

76

#

The constructor is called when an instance of the plugin is created. The

framework instance that the plugin is being associated with is passed in

the framework parameter. Plugins should call the parent constructor when

inheriting from Msf::Plugin to ensure that the framework attribute on

their instance gets set.

#

def initialize(framework, opts)

super

If this plugin is being loaded in the context of a console application

that uses the framework’s console user interface driver, register

console dispatcher commands.

add_console_dispatcher(ConsoleCommandDispatcher)

print_status("Sample plugin loaded.")

end

#

The cleanup routine for plugins gives them a chance to undo any actions

they may have done to the framework. For instance, if a console

dispatcher was added, then it should be removed in the cleanup routine.

#

def cleanup

If we had previously registered a console dispatcher with the console,

deregister it now.

remove_console_dispatcher(’Sample’)

end

#

This method returns a short, friendly name for the plugin.

#

def name

"sample"

end

#

This method returns a brief description of the plugin. It should be no

more than 60 characters, but there are no hard limits.

#

def desc

"Demonstrates using framework plugins"

end

end

end

77

	Introduction
	Why Ruby?
	Design and Architecture

	Rex
	Assembly
	Integer packing
	Stack pointer adjustment
	Architecture-specific opcode generation

	Encoding
	Exploitation
	Egghunter
	SEH record generation

	Jobs
	Logging
	LEV_0 - Default
	LEV_1 - Extra
	LEV_2 - Verbose
	LEV_3 - Insanity

	Opcode Database
	Post-exploitation
	Protocols
	DCERC
	HTTP
	SMB

	Services
	Sockets
	Comm classes
	TCP sockets
	SSL sockets
	Switch board routing table
	Subnet walking

	Synchronization
	Notification events
	Reader/Writer locks
	Reference counting
	Thread-safe operations

	Ui
	Text

	Framework Core
	DataStore
	Event Notifications
	Exploit events
	General framework events
	Database events
	Session events

	Framework Managers
	Module management
	Plugin management
	Session management
	Job management

	Utility Classes
	Exploit driver
	Encoded payload

	Framework Base
	Configuration
	Logging
	Serialization
	Sessions
	CommandShell
	Meterpreter

	Simplified Framework
	Auxiliary
	Exploit
	NOP
	Payload

	Framework Ui
	Framework Modules
	Auxiliary
	Encoder
	encode
	do_encode
	Helper methods

	Exploit
	Stances
	Types
	Interface
	Accessors and Attributes
	Mixins

	Nop
	generate_sled
	nop_repeat_threshold

	Payload
	Interface
	Types
	Handlers

	Framework Plugins
	Framework Sessions
	Command Shell
	Meterpreter

	Methodologies
	Samples
	Framework
	Dumping module info
	Encoding the contents of a file
	Enumerating modules
	Running an exploit using framework base
	Running an exploit using framework core

	Framework Module
	Auxiliary
	Encoder
	Exploit
	Nop
	Payload

	Framework Plugin
	Console user interface plugin

