
Comparing Anomaly Detection Techniques for HTTP

Kenneth L. Ingham1 Hajime Inoue2

1 University of New Mexico, Computer Science Department, Albuquerque, NM, 87131, USA
ingham@cs.unm.edu

2 Carleton University School of Computer Science Ottawa, ON, K1S 5B6, Canada
hinoue@ccsl.carleton.ca

Abstract. Much data access occurs via HTTP, which is becoming a universal
transport protocol. Because of this, it has become a common exploit target and
several HTTP specific IDSs have been proposed as a response. However, each
IDS is developed and tested independently, and direct comparisons are difficult.
We describe a framework for testing IDS algorithms, and apply it to several pro-
posed anomaly detection algorithms, testing using identical data and test environ-
ment. The results show serious limitations in all approaches, and we make pre-
dictions about requirements for successful anomaly detection approaches used to
protect web servers.

Keywords: Anomaly detection, Intrusion detection, Comparison, HTTP, Hypertext
transport protocol.

1 Introduction

The Hypertext Transfer Protocol (HTTP) [1] has become a universal transport protocol.
For example, it is used for file sharing [2], payment processing [3], remote procedure
calls [4], streaming media [5], and even protocols such as SSH [6]. Custom web ap-
plications and the rush toward Web Services [7] mean that in the future, we can ex-
pect heavier use of HTTP. Robertson et al. [8] claimed that many web applications are
written by people with little expertise in security and that web-based vulnerabilities
represent 25% of the total security flaws reported in the Common Vulnerabilities and
Exposures list (CVE) [9] 1999 through 2005.

The importance of HTTP and the security problems have led many researchers to
propose intrusion detection systems (IDSs) for use with HTTP. Unfortunately, the pro-
posed IDSs suffer from one or more of the following problems:

– The proposed IDS is not fully described and the source code is not available.
– The test data is not available, preventing a direct comparison.
– The test data is not labeled, preventing replication.
– The test data is not representative of traffic seen today.

To address this problem, we describe a framework for comparing IDS algorithms,
and we use this framework to compare several anomaly IDS algorithms under identical

circumstances. This framework3 and the attack data4 are open source to encourage fur-
ther experimentation. Under more rigorous testing, not all algorithms perform as well
as the initial tests showed, and we discuss why some algorithms do better than others.

Three basic architectures of IDSs exist: signature detection, specification, and anomaly
detection. We focus in this paper on anomaly detection. Signature detection systems
cannot detect novel attacks, while specification systems require skills well beyond those
commonly used when developing web applications. Additionally, whenever the pro-
tected program changes, the specification must be updated. Although we test only
anomaly IDSs, the framework can be applied to signature and specification based algo-
rithms as well.

The organization of the paper is as follows. The following section, Section 2, sets
the stage by describing previous IDS testing, with a focus on systems designed for
HTTP. We then briefly describe the test framework and test data in Section 3. The
specific algorithms we tested are described in Section 3.3, followed by the test results in
Section 4. Our discussion of the results follows in Section 5, while Section 6 concludes
the paper with a summary of our results and a discussion of future work.

2 Prior work

There are at least two reasons to testing IDSs: (1) to verify that an algorithm is effec-
tive and efficient at detecting attacks, and (2) to compare two or more algorithms to
determine the better under various metrics.

Most IDS testing is little more than asking, “Does the IDS detect one or a few
attacks?” Better are researchers who ask the question, “Which of the following attacks
can the IDS detect?” Even this testing is often acknowledged as weak.

Good testing is repeatable; the data are available to other researchers facilitating
direct comparisons of the results, the training data are representative of real systems, and
the attack data accurately represent the diversity of attacks. A good test also compares
two or more valid approaches (i.e., no straw man arguments). The results of a good test
should provide guidance about which system or algorithm performs best under different
circumstances. To this point, most IDSs for web servers have been weakly tested, and/or
the tests are limited in their scope. In their review of IDS testing, Athanasiades et al.
state that they do not believe this problem will ever be properly solved [10].

There are several explanations for the scarcity of good IDS testing. Identifying ap-
propriate data is difficult—the data must be representative of realistic operating condi-
tions. Data collected live from a network might be subject to privacy concerns. Synthetic
data must be shown to represent real data on a target network accurately. In order to test
an IDS, researchers need a collection of intrusions and vulnerable machines on which to
test the intrusions. Because a library of intrusions represents a threat to vulnerable sys-
tems, researchers often use disconnected networks for testing to ensure that the attack
does not escape into unprotected networks.

3 The parser, framework and algorithm implementation code is available from the Comprehensive
Perl Archive Network (CPAN) at
http://cpan.org/modules/by-authors/id/I/IN/INGHAM/.

4 The attack data is available at http://www.i-pi.com/HTTP-attacks-JoCN-2006/.

http://cpan.org/modules/by-authors/id/I/IN/INGHAM/
http://www.i-pi.com/HTTP-attacks-JoCN-2006/

Setting up and maintaining a good, protected network is resource-intensive, both
in the costs of the hardware, as well as in system administration support to set up and
maintain a diversity of machines needed to ensure a good test environment. Exploits are
specific to operating system and version, as well to to specific compilers, libraries, and
other software. An intrusion is likely to fail if any part of the execution environment is
different than expected. Because of this, a machine, or virtual machine, may be required
for each new intrusion added to the attack corpus.

Finally, Debar noted that a set of criteria for evaluating an IDS does not exist [11].
Even if such criteria were available, the most careful comparisons, such as Warrender
et al. [12], lack enough information to be repeatable.

2.1 Frameworks for testing

A framework for testing is one way of reproducibility by providing a setup in which
different IDSs can be tested under identical conditions. Three researchers or research
groups have established such frameworks:

– The first published papers about an IDS testing framework and methodology were
from Puketza et al. [13,14] at UC Davis. Unless they failed to publish further work,
they built the framework and then tested only one IDS: NSM [15,16].

– Wan and Yang [17] developed a framework for testing sensors that used the Internet
Engineering Task Force (IETF) Intrusion Detection Working Group (IDWG) Intru-
sion Detection Message Exchange Format (IDMEF) [18]. Their framework might
be useful, but the paper describes only a preliminary version.

– IBM Zurich [11] set up a laboratory for testing IDSs. Their normal data came not
only from recordings of user sessions, but also from the IBM test suites for the AIX
operating system. While this test suite is not representative of actual user interac-
tions, it exercises normal functionality of the product.

2.2 Data sets for testing HTTP IDSs

Using a good data set is critical for the test. The training and test data must be repre-
sentative of the web server(s) to be protected, and the attacks used for testing need to
illustrate the diversity of attacks existing today. Given the diversity between web sites,
the ideal situation is to use data collected from the server to be protected. These data of-
ten have privacy issues associated with them, preventing other researchers from using it
and thereby hindering repeatability. This tension has resulted in some researchers using
open, less-representative data, while others use closed but more accurate data sets.

The DARPA/MIT Lincoln Laboratories IDS tests of 1998 and 1999 produced the
most prominent data sets [19,20]. Many researchers in IDS research used these data
because large data sets are scarce and the dataset provides an immediate comparison
with the original Lincoln Labs test. Open datasets allow comparison of methods, but
careful analysis of the relevant papers is required to combine and compare the results.
Furthermore, differences in testing methodologies make direct comparison difficult.

However, this data set is not without its critics. McHugh [21,22] pointed out that
the DARPA/MIT Lincoln Laboratories IDS test used generated data, but the MIT re-
searchers never did any tests to show that the generated data was representative of real

data. Additionally, they did no tests to verify that their attacks were representative of
real attacks. The Lincoln Labs data set is also quite dated, as web behavior has evolved
significantly over the years.

When testing IDSs for HTTP, researchers using the Lincoln Labs data sets have only
four web attacks. When systems developed using these data are tested on a broader data
set, their performance suffers; confirmation of this assertion appears in this paper. In
spite of these limitations, Wang and Stolfo [23], Mahoney [24], and Mahoney and Chan
[25] Vargiya and Chan [26] used one or both of these data sets for testing their IDSs,
at least a portion of which were for protecting web servers. Estévez-Tapiador et al. [27]
used these data as normal behavior, but they developed their own attack database to
supplement the attacks in the Lincoln Labs data.

Recognizing the shortcomings of the Lincoln Labs data, other researchers have used
test data that is more representative for the servers the IDS is protecting. However, these
data are unavailable for others to use, eliminating direct comparisons. For example,
Kruegel et al. [28,29] tested their system using extensive normal data sets from multiple
sites (including Google).5 For a portion of their 12 attacks, they used attacks against
software that ran on one of their data source web servers. Wang and Stolfo [23] used
data collected from their departmental web server as an additional source of data, but
they did not filter attacks from the data and therefore used it only for testing the training.
Tombini et al. [30] collected data from two production web servers, one academic, and
one industrial, with a combined total of over five million HTTP requests from web
server log files. Estévez-Tapiador et al. [27] used 1500 attack requests representing
variants of 85 distinct attacks, the largest attack database reported to date.

Another important HTTP data issue is how much of the HTTP request the IDS
used. While most attacks to date have been in the requested resource path, some attacks
target other regions of the request. For example, Apache Sioux [31] exhausts Apache’s
memory by a repeated header line. Wang and Stolfo [23], in different experiments,
modeled the packet payload, the first and last 100 bytes, and also the first 1000 bytes
of the connection. Kruegel and Vigna and Kruegel et al. [28,29] obtained their test
data from web server log files, and only looked at CGI programs. Web server log files
are a popular data source; Tombini et al. [30] and Robertson et al. [8] also used them.
Unfortunately, log files contain only a small portion of most HTTP requests, and attacks
not in the resource path are unlikely to appear in the log files.

3 Experimental setup

To perform rigorous tests of HTTP IDS algorithms, the test circumstances and data
must be identical. Testing requires data representative of what production web servers
receive. Quality test data is difficult to obtain; organizations with the most interesting
data typically consider it confidential. Therefore, we collected data for testing from
four web sites. The attack data needs to be representative of the broad range of attacks
existing today. Since, as we noted in Section 2.2, no public database of attacks exists,

5 The Google data was not even available to the researchers; they sent their programs to Google,
who returned the results.

we compiled our own. Due to space limitations, full details of the experimental setup
are described by Ingham [32].

3.1 Data

The normal data set is a collection of HTTP requests received by to the University
of New Mexico Computer Science departmental web server (cs.unm.edu), as well as
aya.org, explorenm.com, and i-pi.com. The training data was from one week, and the
normal test data is from the following week. All attacks were filtered from the data using
a combination of snort and manual inspection. All the data sets contain the entire HTTP
request.6 These include information not usually found in the log files. Having the HTTP
header lines allows testing for attacks not contained in the requested resource path.

The attack database contains 63 attacks, some of which are variants of the same
vulnerability—either a different exploit for the same vulnerability or the same exploit
against a different operating system. We include the variants because some IDS algo-
rithms will find some variants easier to detect than others. As one example, some of the
Nimda variants are short, allowing detection by the length algorithm, while others are
average length.

The attacks were collected from the following sources: Attacks against web servers
under test (attacks in the wild); BugTraq and the SecurityFocus archives http://
www.SecurityFocus.com/; the Open Source Vulnerability Database http://
www.osvdb.org/; the Packetstorm archives http://Packetstorm.widexs.
nl/; and Sourcebank http://archive.devx.com/sourcebank/. In many
cases, the attack programs from these sources contained bugs, and we had to modify
the program before it would produce malicious web requests. Note that we did not test
to verify whether the attacks produced could actually compromise the targeted web
application.

The attack database contains the following categories of attacks: buffer overflow;
input validation error (other than buffer overflow); signed interpretation of unsigned
value; and URL decoding error. The attacks targeted different web servers: Active Perl
ISAPI; AltaVista Search Engine; AnalogX SimpleServer; Apache with and without
mod php; CERN 3.0A; FrontPage Personal Web Server; Hughes Technologies Mini
SQL; InetServ 3.0; Microsoft IIS; NCSA; Netscape FastTrack 2.01a; Nortel Contiv-
ity Extranet Switches; OmniHTTPd; and PlusMail. The target operating systems for
the attacks include the following: AIX; Linux (many varieties); Mac OS X; Microsoft
Windows; OpenBSD; SCO UnixWare; Solaris x86; Unix; VxWorks; and any x86 BSD
variant.

3.2 The algorithm test framework

A framework allows testing a collection of algorithms in the same environment, ensur-
ing that each algorithm is working under identical conditions. By providing a common
interface, testing any IDS algorithm that uses this interface is straightforward, and the
surrounding support code is reused. The framework for running the tests was designed

6 These data were captured using a snort filter which reconstructs the application layer portion.

http://www.SecurityFocus.com/
http://www.SecurityFocus.com/
http://www.osvdb.org/
http://www.osvdb.org/
http://Packetstorm.widexs.nl/
http://Packetstorm.widexs.nl/
http://archive.devx.com/sourcebank/

to work with anomaly detection algorithms, but it is general enough to work with signa-
ture and specification systems—these systems simply need no training before testing.
As an example, it was easy to write an IDS algorithm object to use snort signatures for
HTTP requests. Detailed descriptions of the test framework are available in [32].

Some algorithms require that the data be tokenized. For these algorithms, we imple-
mented a parser that breaks the HTTP request into tokens based on the those specified
in the HTTP standard, RFC 2616 [1]. The tokens are a combination of the token type
(e.g., method) and optionally the value (e.g., GET). In practice, most of the values are
necessary to properly distinguish attacks from normal requests. The result is a stream
of tokens combined with the associated values.

Instead of using tokens, some algorithms use a string representation for the request.
This (much simpler) representation is also available from the parser.

3.3 Algorithms

We consider algorithms from Kruegel and Vigna [28], who developed a linear com-
bination of six measures (length, a character distribution measure, a Markov Model,
presence/absence of parameters, order of parameters, and whether parameter values
were enumerated or random), and applied them to CGI parameters. For some of the
six algorithms, we also consider them in isolation. We also implemented the charac-
ter distribution metric described by Wang and Stolfo [23], and the DFA induction and
n-grams described by Ingham et al. and Ingham [33,32].

These algorithms are either proposed by often cited papers in the IDS community,
similar to those algorithms but using different data or representations, or successful in
related domains. In short, we tested algorithms claimed to be or likely to be successful
in HTTP-based anomaly intrusion detection.

Request length Observing that buffer overflows and cross-site scripting attacks tend
to be longer than normal CGI attribute values, one measure used by Kruegel and Vigna
[28] was the mean µ and variance σ2 of attribute lengths. These values were calculated
from training data.

For testing, the system calculated the probability p that an attribute would have the
observed length l by:

p =
σ2

(l − µ)2

Character distributions Buffer-overflow attacks often have a distinctive character
distribution. Two research groups have compared the character distribution of test in-
stances to the distribution in the training data. Wang and Stolfo [23] used a character
distribution metric on similarly-sized packets. Kruegel and Vigna [28] used a character
distribution as one of six tests.

Mahalanobis distance Wang and Stolfo [23] measured the Mahalanobis distance, d,
between two distributions. For efficiency reasons they used a measure they called the

simplified Mahalanobis distance:

d(x, y) =
n−1∑
i=0

| xi − yi |
σi + α

< ∞

n is 256 for the ASCII character set. The α term is a smoothing factor so that the
distance does not become infinite when σi is 0. Wang and Stolfo did not specify how
they calculate α; for the results reported in this paper, α = 0.001. Wang and Stolfo set
the distance threshold to 256 (one standard deviation). Using this value means that rare
distributions are anomalous; consequently it reports false positives even when tested on
the training data set.

Our implementation differs with Wang and Stolfo’s slightly. They correlated packet
length with character frequencies. Our data consists only of the data at the application
layer; the raw packets containing the data were not stored. Therefore, we apply this
method to the complete request. Note that while the different packet sizes may have
a given character distribution, an attacker can easily control the packet size, allowing
them to use packets of a size with a better match for the character distribution.

χ2 of idealized character distribution As one of six tests, Kruegel and Vigna [28]
use a measure of relative character frequency. They produced a sorted list of charac-
ter frequencies fc containing the relative frequency of the character c. Their exam-
ple is the string passwd, where the absolute frequency distribution is 2 for s, 1 for
a, d, p, and w, and 0 for all other characters. The relative frequencies are then f =
(1
3 , 1

6 , 1
6 , 1

6 , 1
6 , 0, ..., 0); note that f6 through f256 are 0. Kruegel and Vigna noted that

relative frequencies decrease slowly for non-attack requests, but have a much steeper
decline for buffer overflows, and no decline for random data.

They called the character distribution induced from the training data the idealized
character distribution (ICD) and noted that

∑256
i=1 ICD(i) = 1.0. As mentioned in

the prior paragraph, the ICD is sorted so most common frequency is ICD(1) and the
least common is ICD(256). ICD is calculated during training as the average over the
character distributions of the requests in the training data.

For testing, they binned the ICD (the expected distribution, calculated through
training) and the distribution of the test request (observed distribution) into six bins
as follows:

Bin 1 2 3 4 5 6
i 1 2–4 5–7 8–12 13–16 17-256

where i ∈ [1, 256]. For example, bin 4 contains
∑12

i=8 ICD(i). Once binned, they then
use a χ2 test to determine if the character distribution of CGI parameter values is similar
to that of the training data:

χ2 =
6∑

i=1

(Oi − Ei)2

Ei

where Ei is bin i for the ICD, and Oi is bin i for the observed distribution. χ2 is
compared to values from a table and the corresponding probability is the return value.

CGI parameter measures Kruegel and Vigna [28] used three different observations
about CGI parameters. First, they noted that since CGI parameters are set programmat-
ically, the normal order of the parameters is fixed. If a human generates the path, the
order could be different, and they presumed this change indicated a potential attack. For
similar reasons, they also noted CGI parameters are supplied even when they have no
value. The result is a regularity in the number, name, and order of the parameters. Their
system learned the parameters present for a given CGI program path. When testing an
instance, the return value is 1 if the same parameters appeared in the training data as in
the test instance, and 0 otherwise.

Similar to the presence and absence test, Kruegel and Vigna noted that some CGI
parameter values are selected from a finite set (enumerated), and others are effectively
random. In the training phase, they test to see whether the number of parameter values
stays small compared to the number of examples. If it does, then the parameter values
are enumerated and the algorithm performs no generalization. Otherwise, it accepts any
value during testing.

DFA We use a one-pass, O(nm) DFA induction algorithm where n is the number of
samples in the training data set and m is the average number of tokens per sample. The
algorithm does not require negative examples. This algorithm is described in detail by
Ingham et al. [33].

A DFA by itself is simply a language acceptor; however, we expect some variation
in normal behavior not incorporated in the DFA induction algorithm. When testing, the
algorithm notes when it is unable to make a transition on a token. If a state exists which
is a destination of that token, the DFA is adjusted to that state. If not, the algorithm uses
the next token and tries again. The number of missed tokens is used to calculate the
similarity s between the DFA model and an HTTP request:

s =
of tokens reached by valid transitions

of tokens in the HTTP request
∈ [0, 1]

The similarity measure reflects the proportion of the request requiring changes for the
DFA to accept the request. Using proportionality instead of a raw miss count allows
complex requests to have greater variability than simpler ones.

Markov Model A Markov model is a nondeterministic finite automaton (NFA) with
probabilities associated with the transitions. A Markov model differs from a DFA in
that multiple transitions might exist for a given token, and a probability is associated
with each transition. The probability of a given string of tokens can be calculated as the
sum of the probabilities of each independent path through the NFA that can generate
the string of tokens. The probability of a given path is the product of the probabilities
of each of the transitions, and this probability is interpreted as the similarity measure
for the testing. Similar to a DFA, a Markov Model represents the structure of the HTTP
request through a directed graph.

For an anomaly detection system, the traditional approach is to build an NFA that
exactly matches the training data. Through a series of state merging operations, it is

compressed and hence it becomes more general (and, as a side effect, it becomes a DFA
with probabilities). For more details about Markov model induction, see the work by
Stolcke [34] and Stolcke and Omohundro [35]. Warrender et al. noted that building a
generalized Markov model is O(n2) [12].

Markov models have been shown to be an effective but time-consuming algorithm
for system-call based intrusion detection [12]. Kruegel and Vigna [28] used a Markov
model as a portion of the IDS for protecting web servers, but after noting that the prob-
ability of any given request string is small, they used their Markov model as a DFA,
noting only whether or not the model was capable of generating the string in question.

Our Markov model implementation is a modification of the DFA algorithm de-
scribed in Section 3.3. When learning the DFA, the number of times that a transition is
taken is recorded, and the probability of taking a given transition is the fraction of the
sum of all of the transitions that the taken transition represents. This approach is not
exactly the same as a more traditional Markov model, but the result is similar in size
and effect to a Markov model after generalization.

Linear Combination Combining IDSs is a logical step once more than one IDS is
available. The system developed by Kruegel and Vigna [28] was limited to HTTP CGI
requests, and consisted of a linear combination of the length, character distribution,
order, and presence or absence of CGI parameter values. Additionally, it also included
a test for which CGI parameter values were enumerated or random, and a Markov
model to learn the structure of those values.

The threshold for normal for each algorithm was determined dynamically, chosen to
be 10% above the highest value obtained in training. Calculating the threshold requires
a second pass over the training data, testing it to find the maximum value for each
measure. For testing, each algorithm was equally weighted and the system produced a
binary normal/abnormal signal.

n-grams An n-gram [36] is a substring generated by sliding a window of length n
across a string of tokens. The result is a set of strings of length n. For example, given
the string abcdef and n = 3, the resulting 3-grams are: abc, bcd, cde, and def.
The similarity measure considers the presence or absence of the test n-grams in the set
of n-grams learned from the training data:

s =
of n-grams from the request also in the training data

of n-grams in the HTTP request
∈ [0, 1]

The n-gram algorithm can use either tokens or strings from the data source. Early
testing showed poor results for strings, so we report results using tokens as the alphabet.

Targeted generalization heuristics To improve the accuracy of the n-gram and DFA
induction algorithms, we also applied several heuristics that increase the generalization.
These check that certain data types have a valid (parsable) format. If so, they return a
small, enumerated set of values dependent on the heuristic. The data types that are
checked for valid form are host names, IP addresses, dates, various hash values (PHP

session IDs, HTTP entity tags, etc), floating point numbers (HTTP q-values), and email
addresses. Ingham and Ingham et al. provide a detailed description of these heuristics
in [32,33].

4 Results

The traditional method for reporting IDS results is a receiver operating characteristic
(ROC) curve that shows the tradeoff between identifying real attacks (true positives)
and incorrectly flagging non-attack requests as an attack (false positives) [37]. True or
false positives are represented in the ROC curves presented here as the fraction of the
attack database or test data set properly or improperly identified. Each set of connected
points represents a different data set used with the algorithm, and each point represents
a different similarity threshold for distinguishing normal from abnormal. A perfect al-
gorithm would have a point at (0, 1) (the upper-left corner of the graph) indicating no
false positives and 100% correct identification of attacks. In order to better see the most
accurate range, the plots only show the X axis values in [0, 0.1]. The portion of the plot
in the rest of the X axis represents a range where the false positives would be too high
for production use; we visit this claim in Section 4.7. The axes in these plots indicate
the actual fraction of true and false positives in the test. To ease comparisons between
algorithms, most of the ROC plots have the same scale; one required a different scale
to present the data, and this fact is noted in the plot description.

McHugh noted several potential problems in presenting IDS test results with ROC
curves [22]. His first objection is that some researchers presented curves with only one
measured point and assumed continuity from (0,0), through their point, to (1,1). We
present plots with 128 uniformly divided points in [0, 1]. No assumption is made about
(0,0) or (1,1). McHugh also pointed out that for the ROC curves to be comparable,
the unit of analysis must be the same. For every test in this paper, this unit of analysis
is always one HTTP request. The tests we performed used the data and framework
described in Section 3.

4.1 Length

Accuracy is below 80% true positive at tolerable false positive rates (see Figure 1). This
measure can detect some buffer overflows and cross-site scripting attacks, however,
attacks such as the Apache chunked transfer error [38] and some variants of Nimda
[39] are short enough to pass as normal; if they are too short, padding to increase the
length is easy. Therefore, a minimum length will never stop an attack other than by a
simplistic attacker. Because this algorithm accepts many strings that are not legal HTTP,
an attacker has great freedom in the construction of her attack.

If this algorithm were to be applied to tokens, it would overgeneralize. Consider
how many sentences with n words are valid English-language sentences. Therefore,
this algorithm is unlikely to ever be useful in isolation. It might be applied as one of
several algorithms, assuming non-attack requests have a tight enough upper bound on
their length.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p
o
si

ti
v
e

fr
ac

ti
o
n

False positive fraction

ROC Curves for Length

aya.org
explorenm.com

i-pi.com
cs.unm.edu

Fig. 1. Receiver Operating Characteristic curves showing the accuracy of the length
algorithm.

4.2 Character distributions

Our Mahalanobis distance results (see Figure 2) differ from Wang and Stolfo’s [23].
Note that the cs.unm.edu accuracy is lower than other sites, indicating that the measure’s
accuracy depends on the mix of HTTP requests. Wang and Stolfo reported true positive
rates about 90% with a 20% false positive rate on the Lincoln Labs data. Trained and
tested using their own departmental server, the false positive rate improved, ranging
from 0.0084% to 1.3%. They found their system did not always detect variants of ex-
ploits used during training. A possible explanation is their dependence on packet size in
their calculations. As we noted in Section 3.3, an attacker can easily manipulate packet
size, so we question the usefulness of this correlation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p
o
si

ti
v
e

fr
ac

ti
o
n

False positive fraction

ROC Curves for Mahalanobis Distance

aya.org
explorenm.com

i-pi.com
cs.unm.edu

Fig. 2. Receiver Operating Characteristic curves showing the accuracy of the Maha-
lanobis distance algorithm.

Figure 3 contains the χ2 distance results. This algorithm performs poorly on all data
sets, with a true positive rate at or below 40%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p
o
si

ti
v
e

fr
ac

ti
o
n

False positive fraction

ROC Curves for Chi-squared distance

aya.org
explorenm.com

i-pi.com
cs.unm.edu

Fig. 3. Receiver Operating Characteristic curves showing the accuracy of the χ2 dis-
tance algorithm.

The Mahalanobis distance and χ2 distance algorithms generalize by allowing simi-
lar, instead of identical, character distributions. Unfortunately, this approach fails. The
HTTP protocol is flexible enough that an attack can be padded to give a character distri-
bution considered close enough to normal, especially with the myriad ways of encoding
data allowed by the standards. To make the problem worse for these metrics, some at-
tacks such as the Apache chunked transfer error [38] and some variants of Nimda [39]
use a character distribution that might pass as normal without padding, and had the
attacker needed to, she could have easily made minor changes to the attack (such as
putting the proper host name or IP address in the Host: field) as needed to ensure a
valid character distribution. The problem is that the set considered normal is so large
that it includes many of the attacks in the attack database, regardless of if the attack is
legal HTTP or not.

Wang and Stolfo [23] tested the Mahalanobis distance using the MIT Lincoln Labs
data (Section 2.2). This data set contains only four HTTP attacks. In the years since the
MIT data were collected, attack characteristics have changed; our more comprehensive
attack data set illustrates the effect of this difference on this algorithm (Figure 2).

4.3 DFA

Figure 4 shows the DFA accuracy. The DFA can achieve better than 80% true positive
rate at a false positive rate of less than 0.1%, which is better than all but the 6-grams.
At slightly higher false positive rates, it achieves true positive rates of over 90%.

The DFA induced using tokens is a directed graph representing the structure of
the HTTP request. Generalization occurs in the DFA generation described in [33]. It
also occurs when one or more “missed tokens” are allowed. These generalizations are

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p
o
si

ti
v
e

fr
ac

ti
o
n

False positive fraction

ROC Curves for DFA

aya.org
explorenm.com

i-pi.com
Filtered

Fig. 4. Receiver Operating Characteristic curves showing the accuracy of the DFA al-
gorithm.

limited compared to that performed by the length and character distribution algorithms.
The better true positive rate relative to all of the other algorithms shows that the model
is even more accurate than that of the n-grams.

4.4 Markov model

The Markov model result values are in [0, 10−13] with many values as small as 10−300.
These small values make it appear that the algorithm identifies everything (both normal
traffic and attacks) as abnormal. To better understand these results, Figure 5 shows the
data plot where the similarity value from the Markov model m has been transformed
into a new similarity value s by s = 1

|loge(m)| , and the plot scale has been changed so the
data appears (making these plots not directly comparable to the rest of the ROC plots in
this paper). This transformation means that the data cannot go through the point (0, 0),
and all of the data appears on the plot. The log transformed Markov model provides 94%
accuracy on cs.unm.edu data, but with an unacceptable false positive rate. The results
on the other web sites show an even better true positive rate, but the false positive rate
remains unacceptably high.

In a Markov model, normal requests might have a probability of 0 due to minor dif-
ferences from the instances in the training data. If the model was induced from filtered
data, attacks would also result in a probability of 0, and the model has a hard time distin-
guishing between these two cases. The Markov model’s generalization is traditionally
achieved by allowing probabilities within a given range. The diversity of normal re-
quests means any given normal request is unlikely, and perpetual novelty of HTTP data
leads to normal requests with a probability of 0. The combination of these two factors
means that the Markov model is a poor model for HTTP requests. Our results apply-
ing a Markov model to the tokens of the complete HTTP request using tokens mirror
those of Kruegel and Vigna applying it to CGI parameters [28]. They reported that the
Markov model suffered because HTTP requests are so diverse that the probability of
any given request is low. When working with complete requests, the problem is even

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
p
o
si

ti
v
e

fr
ac

ti
o
n

False positive fraction

ROC Curves for the log-transformed Markov Model

aya.org
explorenm.com

i-pi.com
cs.unm.edu

Fig. 5. Receiver Operating Characteristic curves showing the accuracy of the Markov
model algorithm. Note that the scale on this plot does not match the scale of the other
plots.

worse, because the increased number of tokens increases the normal level of diversity,
resulting in lower probabilities for any given HTTP request.

4.5 Linear Combination

The linear combination results are in Figure 6. The accuracy is best on the cs.unm.edu
data, but the true positive rate is only around 60%. On the other web sites, it is less ac-
curate. Kruegel and Vigna reported a true positive rate of 100% and false positive rates
less than 0.000650. The disparity is explained by the attacks attempted—in contrast to
their attack database which was constructed solely of attacks in CGI parameters, these
attacks account for only 40% of the attacks in our database.

Most of the discrimination the linear combination came from the order, presence
or absence, and enumerated or random tests which did not generalize. We found it
was not hampered by the character distribution overgeneralization because they limited
their work to a small portion of all attacks (CGI parameters) and this measure was but
one of six.

The method of combining IDSs itself determines the generalization of the combined
algorithm. If all models must agree that a request is normal, the least general usually
determines a request is abnormal. Combining overgeneralizing detectors such as length
and character distribution will usually indicate a normal request (including for many
attacks), and therefore contribute little to the discrimination power of the combination;
combining overgeneralizing detectors results in a system that overgeneralizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p
o
si

ti
v
e

fr
ac

ti
o
n

False positive fraction

ROC Curves for the Linear Combination

aya.org
explorenm.com

i-pi.com
cs.unm.edu

Fig. 6. Receiver Operating Characteristic curves showing the accuracy of the linear
combination algorithm.

4.6 n-grams

Results for 6-grams7 are in Figure 7. The accuracy starts at around 85% true positive
rate with a low false positive rate, making this algorithm comparable to the DFA for
accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

T
ru

e
p
o
si

ti
v
e

fr
ac

ti
o
n

False positive fraction

ROC Curves for 6-grams

aya.org
explorenm.com

i-pi.com
cs.unm.edu

Fig. 7. Receiver Operating Characteristic curves showing the accuracy of the 6-gram
algorithm.

n-grams effectively model the structure, or grammar, of a request by encoding se-
quences of tokens as a directed graph in a manner similar to the DFA and Markov
Model. n-grams minimize false positives by allowing a small number of mismatches,
and it is better able to tell normal requests from nonsense.

7 Preliminary tests showed n = 6 to be optimal.

4.7 False positives

A human system administrator would have to inspect false positives to determine if they
represent normal traffic or attacks. When comparing the algorithms, a useful metric is
the load that the algorithm would place on this person. Table 1 shows the false positive
rate per day, assuming a true positive rate of only 80% is required. This table presents
data using the cs.unm.edu data sets and shows that only the 6-grams and the DFA have a
false positive rate that might be acceptable for a web site like the UNM CS department.

Most previous research has reported false positives as the fraction of the non-attack
test data misidentified, which is the value shown in the ROC plots presented in the ear-
lier sections. This result can be misleading for web sites if a human must evaluate the
abnormal requests to determine if if they represent attacks. A 1% false positive rate
on a lightly-visited web site may be tolerable; the same percentage on Amazon.com or
Google.com would require a large full-time staff. A false positive rate of 0.01 corre-
sponds to 917, 50, 8, and 43 false positives per day for cs.unm.edu, aya.org, i-pi.com,
and explorenm.com respectively. In the 1999 DARPA/MIT Lincoln Laboratories IDS
tests, they stated that above 10 false positives per day is a high rate [19].

Algorithm FP/day
Mahalanobis distance 91,524
χ2 of ICD ∞
Length ∞
6-grams 13
DFA 37
Markov Model (log transform) 39,824
Linear combination ∞

Table 1. False positive rate per day for the algorithms, trained and tested using the
cs.unm.edu data. Algorithms marked with ∞ did not achieve a threshold 80% true
positive rate. The Markov Model data transform is described in Section 4.4.

5 Discussion

The results in Section 4 show that character-based algorithms (Mahalanobis distance,
χ2 of ICD, and Length) are notably less accurate than two of the token-based algo-
rithms (DFA, n-grams). Tokens represent a higher lexical unit, and are used by the
system to represent meaning; attacks often represent nonsensical requests. With the
need to “ship the product yesterday” and other deadlines, programmers often focus on
making the system work under common circumstances and spend fewer resources on
exceptional cases. Additionally, to consider all of the ways in which exceptional states
may be represented requires thinking in ways many programmers were not trained. In
our attack database, most, if not all, of the attacks are nonsensical. The ability to rep-
resent more of the meaning of a HTTP request improves the ability of an algorithm
to discriminate between normal and abnormal. Presumably the normal requests do not

represent nonsense. Applying these concepts to the algorithms we tested, the DFA and
n-grams learn the higher-level structure of valid HTTP requests, and so therefore they
can use this structure to better tell if a request is normal or not.

Both token based algorithms share a weakness in their similarity measures in that
they cannot discern between a novel request with a few new tokens and an attack with a
small number of tokens. This was responsible for some of the missed attacks. Another
attack missed by the DFA can be traced to a user typo. The pair of tokens // appeared
in the training data, causing an edge from the node corresponding to the path separator
/ back to itself. Unfortunately, the beck attack [40] used a multitude of /s to cause an
out-of-memory condition in an older version of Apache.

The idea of representing the meaning of the request allows us to make a prediction:
Statistics such as character distribution applied to tokens rather than characters may
be more accurate than when the same statistic is applied to the characters making up
the request. However, the relationships between tokens is important to the semantics.
Statistics on tokens are likely to be less accurate unless the measure can represent these
relationships. In effect, by ignoring the relationships between tokens, measures such as
the character distribution algorithms applied to tokens will continue to overgeneralize,
and therefore be more prone to mimicry attacks. Consider as an example all English-
language sentences with a specific distribution of words versus the sentences that are
well-formed and not nonsense.

6 Conclusion

This paper evaluated and compared seven different different anomaly intrusion detec-
tion algorithms for HTTP under realistic conditions. This testing is more rigorous than
any HTTP IDS testing reported to date. For this comparison we implemented an open-
source IDS testing framework. In addition, we developed the most comprehensive open
database of HTTP attacks designed for IDS testing.

Most previous IDS approaches for HTTP have represented the request as a character
string. The work we report is one of the first to use tokens from parsing the request, and
the first to use these tokens with DFA induction and n-grams. These algorithms detect
more attacks than earlier approaches. One reason for this improved accuracy is that we
use the complete HTTP request instead of just a portion—most previous IDSs ignore
portions of the request and obviously cannot detect attacks in the ignored portions.

Our test results are explained by two factors. The first is the data representation of
the HTTP request. We have shown that the token-based methods result in algorithms
with a better ability to discriminate between sense and nonsense, and as a result, be-
tween legitimate requests and attacks. The second factor is generalization. We included
several heuristics for generalization the algorithms using tokens. A detailed discussion
of the effects of generalization is out of scope for this paper but is provided by Ingham
in [32].

This research has shown that all the algorithms have an unacceptable false positive
rate. We need additional algorithms and heuristics to improve performance. Further-
more, our work implies that new approaches should be token based, because they better

represent HTTP requests than current algorithms. We hope that the IDS testing frame-
work described in this paper encourages further research.

We thank the anonymous reviewers for their comments and suggestions. The first
author was partially supported by National Science Foundation grant ANIR-9986555.
The second author is supported by the Canadian Government through MITACS.

References

1. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.:
Hypertext transfer protocol—HTTP/1.1 (June 1999) RFC 2616.
ftp://ftp.isi.edu/in-notes/rfc2616.txt Accessed 2002 Oct 2.

2. Hernández, L.O., Pegah, M.: WebDAV: what it is, what it does, why you need it. In:
SIGUCCS ’03: Proceedings of the 31st annual ACM SIGUCCS conference on User
services, New York, NY, USA, ACM Press (2003) 249–254

3. Eastlake, D., Khare, R., Miller, J.: Selecting payment mechanisms over HTTP (2006)
http://www.w3.org/TR/WD-jepi-uppflow-970106, Accessed 2006 Sept 13.

4. Microsoft Corporation: Exchange server 2003 RPC over HTTP deployment scenarios
(2006) http://www.microsoft.com/technet/prodtechnol/exchange/
2003/library/ex2k3rpc.mspx, Accessed 2006 Sept 13.

5. Apple Computer: Tunneling RTSP and RTP over HTTP (2006)
http://developer.apple.com/documentation/QuickTime/QTSS/
Concepts/chapter_2_section_14.html, Accessed 2006 Sept 13.

6. Wiers, D.: Tunneling SSH over HTTP(S) (2006)
http://dag.wieers.com/howto/ssh-http-tunneling/, Accessed 2006
Sept 13.

7. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.:
Web services architecture. Technical Report W3C Working Group Note 11 February 2004,
World Wide Web Consortium (W3C) (2004) Online at
http://www.w3.org/TR/ws-arch/. Accessed 2007-04-05.

8. Robertson, W., Vigna, G., Kruegel, C., Kemmerer, R.A.: Using generalization and
characterization techniques in the anomaly-based detection of web attacks. In: Network and
Distributed System Security Symposium Conference Proceedings: 2006, Internet Society
(2006) http://www.isoc.org/isoc/conferences/ndss/06/
proceedings/html/2006/papers/anomaly_signatures.pdf Accessed 12
February 2006.

9. Corporation, M.: Common vulnerabilities and exposures http://cve.mitre.org/
Accessed 16 June 2006.

10. Athanasiades, N., Abler, R., Levine, J., Owen, H., Riley, G.: Intrusion detection testing and
benchmarking methodologies. In: IEEE-IWIA ’03: Proceedings of the First IEEE
International Workshop on Information Assurance (IWIA’03), Washington, DC, USA,
IEEE Computer Society (2003) 63

11. Debar, H., Dacier, M., Wespi, A., Lampart, S.: An experimentation workbench for intrusion
detection systems. Technical Report RZ 6519, IBM Research Division, Zurich Research
Laboratory, 8803 Rüuschlikon, Switzerland (September 1998)

12. Warrender, C., Forrest, S., Pearlmutter, B.A.: Detecting intrusions using system calls:
Alternative data models. In: IEEE Symposium on Security and Privacy. (1999) 133–145

13. Puketza, N., Chung, M., Olsson, R., Mukherjee, B.: A software platform for testing
intrusion detection systems. IEEE Software 14(5) (September 1997) 43–51

ftp://ftp.isi.edu/in-notes/rfc2616.txt
http://www.w3.org/TR/WD-jepi-uppflow-970106
http://www.microsoft.com/technet/prodtechnol/exchange/2003/library/ex2k3rpc.mspx
http://www.microsoft.com/technet/prodtechnol/exchange/2003/library/ex2k3rpc.mspx
http://developer.apple.com/documentation/QuickTime/QTSS/Concepts/chapter_2_section_14.html
http://developer.apple.com/documentation/QuickTime/QTSS/Concepts/chapter_2_section_14.html
http://dag.wieers.com/howto/ssh-http-tunneling/
http://www.w3.org/TR/ws-arch/
http://www.isoc.org/isoc/conferences/ndss/06/proceedings/html/2006/papers/anomaly_signatures.pdf
http://www.isoc.org/isoc/conferences/ndss/06/proceedings/html/2006/papers/anomaly_signatures.pdf
http://cve.mitre.org/

14. Puketza, N.J., Zhang, K., Chung, M., Mukherjee, B., Olsson, R.A.: A methodology for
testing intrusion detection systems. IEEE Transactions on Software Engineering 22(10)
(1996) 719–729

15. Heberlein, L.: Network security monitor (NSM)—final report. Technical report, University
of California at Davis Computer Security Lab (1995) Lawrence Livermore National
Laboratory project deliverable.
http://seclab.cs.ucdavis.edu/papers/NSM-final.pdf.

16. Heberlein, L., Dias, G., Levitt, K., Mukherjee, B., Wood, J., Wolber, D.: A network security
monitor. In: 1990 IEEE Computer Society Symposium on Research in Security and
Privacy, 7–9 May 1990, Oakland, CA, USA, Los Alamitos, CA, USA, IEEE Computer
Society Press (1990) 296–304

17. Wan, T., Yang, X.D.: IntruDetector: a software platform for testing network intrusion
detection algorithms. In: Seventeenth Annual Computer Security Applications Conference,
10–14 Dec. 2001, New Orleans, LA, USA, Los Alamitos, CA, USA, IEEE Computer
Society (2001) 3–11

18. Curry, D., Debar, H.: Intrusion detection message exchange format data model and
extensible markup language (XML) document type definition (December 2002)
http://www.ietf.org/internet-drafts/
draft-ietf-idwg-idmef-xml-09.txt Accessed 1 January 2003.

19. Haines, J.W., Lippmann, R.P., Fried, D.J., Tran, E., Boswell, S., Zissman, M.A.: 1999
DARPA intrusion detection system evaluation: Design and procedures. Technical Report
TR-1062, Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA
(February 2001)

20. Lippmann, R., Haines, J., Fried, D., Korba, J., Das, K.: The 1999 DARPA off-line intrusion
detection evaluation. Computer Networks 34(4) (October 2000) 579–95

21. McHugh, J.: The 1998 Lincoln Laboratory IDS evaluation—a critique. In Debar, H., Me,
L., Wu, S., eds.: Recent Advances in Intrusion Detection. Third International Workshop,
RAID 2000, 2–4 Oct. 2000, Toulouse, France, Berlin, Germany, Springer-Verlag (2000)
145–61

22. McHugh, J.: Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA
intrusion detection system evaluations as performed by Lincoln Laboratory. ACM
Transactions on Information and Systems Security 3(4) (November 2000) 262–94

23. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In: Recent
Advances in Intrusion Detection: 7th International Symposium, RAID 2004, Sophia
Antipolis, France, September 15-17, 2004. Proceedings. Volume 3224 of Lecture Notes in
Computer Science., Springer (2004) 203–222

24. Mahoney, M.V.: Network traffic anomaly detection based on packet bytes. In: Proceedings
of the 2003 ACM Symposium on Applied computing, ACM Press (2003) 346–350

25. Mahoney, M.V., Chan, P.K.: Learning nonstationary models of normal network traffic for
detecting novel attacks. In: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM Press (2002) 376–385

26. Vargiya, R., Chan, P.: Boundary detection in tokenizing network application payload for
anomaly detection. In: Proceedings of the ICDM Workshop on Data Mining for Computer
Security (DMSEC). (November 2003) 50–59 Workshop held in conjunction with The Third
IEEE International Conference on Data Mining. Available at
http://www.cs.fit.edu/˜pkc/dmsec03/dmsec03notes.pdf. Accessed 5
April 2006.

27. Estévez-Tapiador, J.M., Garcı́a-Teodoro, P., Dı́az-Verdejo, J.E.: Measuring normality in
http traffic for anomaly-based intrusion detection. Journal of Computer Networks 45(2)
(2004) 175–193

http://seclab.cs.ucdavis.edu/papers/NSM-final.pdf
http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-09.txt
http://www.cs.fit.edu/~pkc/dmsec03/dmsec03notes.pdf

28. Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. In: Proceedings of the
10th ACM conference on Computer and communications security, ACM Press (2003)
251–261

29. Kruegel, C., Vigna, G., Robertson, W.: A multi-model approach to the detection of
web-based attacks. Computer Networks 48(5) (2005) 717–738

30. Tombini, E., Debar, H., Mé, L., Ducassé, M.: A serial combination of anomaly and misuse
IDSes applied to HTTP traffic. In: 20th Annual Computer Security Applications
Conference. (2004)

31. cve.mitre.org: CVE-1999-1199 (September 2004) http:
//www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1199
Accessed 30 October 2005.

32. Ingham, K.L.: Anomaly Detection for HTTP Intrusion Detection: Algorithm Comparisons
and the Effect of Generalization on Accuracy. PhD thesis, Department of Computer
Science, University of New Mexico, Albuquerque, NM, 87131 (2007)

33. Ingham, K.L., Somayaji, A., Burge, J., Forrest, S.: Learning DFA representations of HTTP
for protecting web applications. Computer Networks 51(5) (11 April 2007) 1239–1255

34. Stolcke, A., Omohundro, S.M.: Best-first model merging for hidden Markov model
induction. Technical Report TR-94-003, International Computer Science Institute, 1947
Center Street, Suite 600, Berkeley, CA, 94704-1198 (1994)

35. Stolcke, A., Omohundro, S.: Hidden Markov Model induction by bayesian model merging.
In Hanson, S.J., Cowan, J.D., Giles, C.L., eds.: Advances in Neural Information Processing
Systems. Volume 5., Morgan Kaufmann, San Mateo, CA (1993) 11–18

36. Damashek, M.: Gauging similarity with n-grams: language-independent categorization of
text. Science 267(5199) (1995) 843–848

37. Hancock, J., Wintz, P.: Signal Detection Theory. McGraw-Hill (1966)
38. Cohen, C.F.: CERT advisory CA-2002-17 Apache web server chunk handling vulnerability

(July 2002) http://www.cert.org/advisories/CA-2002-17.html.
Accessed 24 July 2002.

39. Danyliw, R., Dougherty, C., Householder, A., Ruefle, R.: CERT advisory CA-2001-26
Nimda worm (September 2001)
http://www.cert.org/advisories/CA-2001-26.html.

40. cve.mitre.org: CVE-1999-0107 (July 1999) http:
//www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0107
Accessed 3 September 2006.

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1199
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1199
http://www.cert.org/advisories/CA-2002-17.html
http://www.cert.org/advisories/CA-2001-26.html
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0107
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0107

	Comparing Anomaly Detection Techniques for HTTP
	Kenneth L. Ingham Hajime Inoue

